
© Ascertia Limited. All rights reserved.
This document contains commercial-in-confidence material. It must not be disclosed to any third party
without the written authority of Ascertia Limited.

Commercial-in-Confidence

A D S S S e r v e r

D e v e l o p e r s G u i d e

AS CE RT IA LT D

J U L Y 2 0 2 3

D o c u m e n t V e r s i o n - 8 . 2

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 2 of 181

CONTENTS

1 INTRODUCTION ... 5

1.1 SCOPE.. 5
1.2 INTENDED READERSHIP .. 5
1.3 CONVENTIONS ... 5
1.4 TECHNICAL SUPPORT ... 5
1.5 GLOSSARY... 6
1.6 REFERENCES TO PKI STANDARDS .. 7

2 ADSS SERVER OVERVIEW ... 9

2.1 MODES OF OPERATION .. 10
2.2 ADSS SERVER ARCHITECTURE .. 10
2.3 ADSS SERVER WEB SERVICES INTERFACES .. 11
2.4 INTERFACING TO THE OCSP, SCVP AND TSA SERVICES .. 13
2.5 INTEGRATION WITH BUSINESS APPLICATIONS ... 13
2.6 ADSS SERVER ADMIN GUIDE .. 14
2.7 SERVICE URLS ... 14
2.8 ADSS SERVER INTERFACE SCHEMA ... 18
2.9 ADSS CLIENT SDK (JAVA AND .NET VERSIONS) .. 20

3 MESSAGE, REQUEST AND RESPONSE CLASSES ... 23

3.1 MESSAGE CLASS ... 23
3.2 REQUEST CLASS.. 23
3.3 RESPONSE CLASS .. 26

4 ADSS SIGNING SERVICE.. 27

4.1 DIGITAL SIGNATURE STANDARDS .. 27
4.2 SETTING UP SIGNING SERVICE PROFILES.. 27
4.3 THE SIGNING SERVICE API .. 28
4.4 SIGNING REQUEST AND RESPONSE CLASSES ... 28
4.5 PDF SIGNING REQUEST AND RESPONSE CLASSES .. 34
4.6 EMPTY SIGNATURE FIELD REQUEST AND RESPONSE CLASSES.. 36
4.7 DOCUMENT HASHING REQUEST AND RESPONSE CLASSES .. 38
4.8 SIGNATURE ASSEMBLY REQUEST AND RESPONSE CLASSES ... 39
4.9 OFFICE SIGNING REQUEST AND RESPONSE CLASSES ... 40
4.10 SIGNING STATUS REQUEST AND RESPONSE CLASSES .. 42
4.11 CERTIFICATE DOWNLOAD REQUEST AND RESPONSE CLASSES ... 43
4.12 SIGNING SERVICE SAMPLE CODE ... 44
4.13 ADSS SIGNING SERVICE SUPPORTED ALGORITHMS ... 46
4.14 ERROR CODES .. 47

5 ADSS VERIFICATION SERVICE ... 51

5.1 DIGITAL SIGNATURE STANDARDS .. 51
5.2 SETTING UP VERIFICATION SERVICE PROFILES ... 51
5.3 THE VERIFICATION SERVICE API ... 52
5.4 VERIFICATION REQUEST CLASSES .. 52
5.5 SIGNATURE VERIFICATION REQUESTS ... 55
5.6 CERTIFICATE VALIDATION REQUESTS .. 57
5.7 SENDING THE VERIFICATION REQUEST .. 59
5.8 VERIFICATION RESPONSE METHODS .. 60
5.9 VERIFICATION SERVICE REPORTS ... 64
5.10 VERIFICATION SERVICE SAMPLE CODE .. 68
5.11 ADSS VERIFICATION SERVICE SUPPORTED ALGORITHMS... 70
5.12 ERROR CODES .. 70

6 ADSS CERTIFICATION SERVICE ... 73

6.1 CERTIFICATION USE CASES AND ASCERTIA PROTOCOL SCHEMA .. 73
6.2 CERTIFICATION PROFILES .. 73
6.3 THE CERTIFICATION SERVICE API .. 74
6.4 CERTIFICATION REQUEST CLASS .. 74

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 3 of 181

6.5 CERTIFICATION RESPONSE CLASS .. 85
6.6 CERTIFICATION SERVICE SAMPLE CODE... 86
6.7 ADSS CERTIFICATION SERVICE SUPPORTED ALGORITHMS ... 87
6.8 ERROR CODES .. 88

7 ADSS OCSP SERVICE ... 91

7.1 SETTING UP ADSS OCSP SERVICE PROFILES .. 91
7.2 THE ADSS OCSP SERVICE API .. 91
7.3 OCSP REQUEST CLASS ... 91
7.4 OCSP RESPONSE CLASS ... 93
7.5 OCSP SERVICE SAMPLE CODE ... 94
7.6 ADSS OCSP SERVICE SUPPORTED ALGORITHMS .. 95
7.7 ERROR CODES .. 95

8 ADSS TSA SERVICE ... 97

8.1 SETTING UP ADSS TSA PROFILES ... 97
8.2 THE ADSS TSA SERVICE API ... 97
8.3 TSP REQUEST CLASS ... 97
8.4 TIMESTAMP RESPONSE CLASS .. 98
8.5 TSA SERVICE SAMPLE CODE .. 100
8.6 ADSS TSA SERVICE SUPPORTED ALGORITHMS... 100
8.7 ERROR CODES .. 100

9 ADSS XKMS SERVICE .. 102

9.1 SUPPORT FOR THE PEPPOL STANDARD .. 102
9.2 SETTING UP XKMS VALIDATION PROFILES .. 102
9.3 THE XKMS VALIDATION SERVICE API .. 102
9.4 VALIDATE REQUEST CLASS .. 103
9.5 VALIDATE RESULT CLASS... 104
9.6 COMPOUND REQUEST CLASS ... 107
9.7 COMPOUND RESULT CLASS ... 107
9.8 XKMS SERVICE SAMPLE CODE ... 108
9.9 ADSS XKMS SERVICE SUPPORTED ALGORITHMS ... 110
9.10 ERROR CODES .. 110

10 ADSS SCVP SERVICE ... 112

10.1 SIMPLIFIED USE OF SCVP ... 112
10.2 THE SCVP CLIENT API ... 114
10.3 SCVP REQUEST CLASS ... 114
10.4 SCVP RESPONSE CLASS.. 117
10.5 SCVP VALIDATION POLICY REQUEST CLASS ... 121
10.6 SCVP VALIDATION POLICY RESPONSE CLASS ... 121
10.7 SCVP GET POLICY INFO REQUEST CLASS .. 123
10.8 SCVP GET POLICY INFO RESPONSE CLASS ... 123
10.9 SCVP SAMPLE CODE ... 124
10.10 ADSS SCVP SERVICE SUPPORTED ALGORITHMS .. 124
10.11 ERROR CODES .. 125

11 ADSS LTANS SERVICE ... 127

11.1 LTANS SERVICE ... 127
11.2 LTANS SERVICE PROFILES .. 127
11.3 THE LTANS SERVICE API ... 128
11.4 ARCHIVING REQUEST CLASS .. 128
11.5 ARCHIVING RESPONSE CLASS ... 129
11.6 LTANS SERVICE SAMPLE CODE .. 131
11.7 ADSS LTANS SERVICE SUPPORTED ALGORITHMS .. 132
11.8 ERROR CODES .. 132

12 ADSS DECRYPTION SERVICE ... 135

12.1 ADSS DECRYPTION SERVICE PROFILES ... 135
12.2 THE ADSS DECRYPTION SERVICE API .. 135
12.3 DECRYPTION REQUEST CLASS... 135

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 4 of 181

12.4 DECRYPTION RESPONSE CLASS ... 137
12.5 ERROR CODES .. 137

13 ADSS GO>SIGN SERVICE... 139

13.1 ADSS GO>SIGN SERVICE OVERVIEW ... 139
13.2 ERROR CODES .. 139

14 ADSS RA SERVICE ... 142

14.1 RA USE CASES AND ASCERTIA PROTOCOL SCHEMA ... 142
14.2 RA PROFILES ... 142
14.3 THE RA SERVICE API ... 142
14.4 RA SERVICE SAMPLE CODE ... 150
14.5 ERROR CODES .. 151

15 ADSS RAS SERVICE ... 153

15.1 RAS PROFILES ... 153

16 ADSS SAM SERVICE .. 154

16.1 SAM PROFILES .. 154

17 ADSS CSP SERVICE ... 155

17.1 CSP PROFILES .. 155

18 UTILITY CLASSES .. 156

18.1 AUTHORISATIONDATA CLASS ... 156
18.2 UTIL CLASS ... 158

19 ADSS SIGNING SERVICE - USE CASES AND SCHEMA ... 161

19.1 SERVER-SIDE DOCUMENT SIGNING .. 161
19.2 CLIENT-SIDE DOCUMENT SIGNING .. 161
19.3 CREATING AN EMPTY SIGNATURE FIELD IN PDF DOCUMENTS .. 162
19.4 DOCUMENT HASHING AND ASSEMBLY ... 165
19.5 DOCUMENT HASHING .. 166
19.6 SIGNATURE ASSEMBLY ... 168

20 ADSS CERTIFICATION SERVICE – USE CASE OVERVIEW ... 170

20.1 GENERATING / REGISTERING A KEY PAIR AND CERTIFICATE .. 170
20.2 RENEWING A KEY PAIR AND CERTIFICATE .. 170
20.3 RETRIEVING PRIVATE KEY (PKCS#12 OBJECT) AND CERTIFICATE .. 171
20.4 DELETING A KEY PAIR AND CERTIFICATE .. 171
20.5 CHANGING AN END-USER KEY AUTHORISATION CODE... 171
20.6 OPERATION OF THE CERTIFICATION SERVICE .. 172

21 ADSS RA SERVICE – USE CASE OVERVIEW .. 177

21.1 GENERATING A KEY PAIR AND CERTIFICATE ... 177
21.2 STATUS OF A CERTIFICATE ... 177
21.3 REVOKING A CERTIFICATE ... 178
21.4 OPERATIONS OF THE RA SERVICE .. 178

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 5 of 181

1 Introduction

1.1 Scope
This document provides information on the Advanced Digital Signature Services (ADSS) Web Services
interfaces and how business application developers can integrate these trust services into their
applications. It also provides simple use cases on how an example Business Logic Application (BLA)
should interact with ADSS Server.

1.2 Intended Readership
This guide is intended for developers who are interested in writing applications which will use the web
services offered by ADSS Server. It is assumed that the reader has a basic knowledge of digital
signatures, certificates and IT security.

1.3 Conventions
The following typographical conventions are used in this guide to help locate and identify information:

Bold text identifies menu names, menu options, items you can click on the screen, file names, folder
names, and keyboard keys.

Courier font identifies code and text that appears on the command line.

Bold courier identifies commands that you are required to type in.

1.4 Technical support
If Technical Support is required, Ascertia has a dedicated support team providing debugging assistance,
integration assistance and general customer support. Ascertia Support can be accessed in the following
ways:

Website https://www.ascertia.com

Email support@ascertia.com

Knowledge Base https://www.ascertia.com/products/knowledge-base/adss-server/

FAQs http://faqs.ascertia.com/display/ADSS/ADSS+Server+FAQs

In addition to the free support service described above, Ascertia provides formal support agreements
with all product sales. Please contact sales@ascertia.com for more details.

A Product Support Questionnaire should be completed to provide Ascertia Support with further
information about your system environment. When requesting help it is always important to confirm:

 System Platform details;

 ADSS Server version number and build date;

 Details of specific issue and the relevant steps taken to reproduce it;

 Database version and patch level;

 The product log files.

mailto:support@ascertia.com
mailto:sales@ascertia.com

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 6 of 181

1.5 Glossary

ADSS Server ADSS Server is Ascertia’s strategic product for a wide range of Infrastructure and
Enterprise trust services including digital signature creation ,verification,
timestamping, certificate validation, certificate issuance and long-term archiving

CA Certificate Authority (logical entity responsible for issuing certificates and optionally
also CRLs)

CAPI Microsoft Crypto API

Cert Digital Certificate

CRL Certificate Revocation Lists

CMS Cryptographic Message Syntax (a digital signature format)

DBMS Database Management System

DSA Digital Signature Algorithm

HSM Hardware/Host Security Module

HTTP
HTTP/S

Hyper Text Transfer Protocol

HTTP over SSL/TLS connection

JDBC Java Database Connectivity

IETF Internet Engineering Task Force

LDAP

LDAP/S

Lightweight Directory Access Protocol

LDAP over SSL/TLS connection

OCSP Online Certificate Status Protocol (an IETF protocol for verifying the revocation
status of a digital certificate)

PKCS Public Key Cryptographic Standards

PKI Public Key Infrastructure

RFC Request For Comments (an IETF Internet Standards Track Protocol)

RSA Rivest, Shamir, Adleman (public key algorithm)

SCVP Server-based Certificate Validation Protocol

SHA Secure Hash Algorithm (various different algorithms, e.g. SHA-1, SHA-256, SHA-
512 etc.)

S/MIME Secure MIME (standard for signing emails)

SSL / TLS Secure Sockets Layer / Transport Layer Security (a later version of SSL)

TA Trust Authority (authority trusted for issuing certificates, CRLs, OCSP responses
and/or time stamps)

TSA Time Stamp Authority (authority responsible for issuing timestamp tokens to prove
that a document/data existed at a particular time)

TSP Time Stamp Protocol

PAdES PDF Advanced Electronic Signatures

XKMS XML Key Management Specifications

XML DigSig XML Digital Signature standard

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 7 of 181

1.6 References to PKI Standards
CMS http://tools.ietf.org/html/rfc3852

CAdES http://pda.etsi.org/exchangefolder/ts_101733v010801p.pdf

PDF Signatures PDF Public Key Digital Signature and Encryption Specification v3.2
http://www.adobe.com/devnet/pdf/pdf_reference.html

PAdES http://pda.etsi.org/exchangefolder/ts_10277801v010101p.pdf

http://pda.etsi.org/exchangefolder/ts_10277802v010201p.pdf

http://pda.etsi.org/exchangefolder/ts_10277803v010101p.pdf

http://pda.etsi.org/exchangefolder/ts_10277804v010101p.pdf

http://pda.etsi.org/exchangefolder/ts_10277805v010101p.pdf

PKCS#7 http://www.faqs.org/rfcs/rfc2315.html

S/MIME http://www.ietf.org/rfc/rfc3851.txt

Timestamp http://www.ietf.org/rfc/rfc3161.txt

XML DigSig http://www.ietf.org/rfc/rfc3275.txt

XAdES http://uri.etsi.org/01903/v1.3.2/ts_101903v010302p.pdf

OCSP http://www.ietf.org/rfc/rfc6960.txt

SCVP http://www.ietf.org/rfc/rfc5055.txt

XKMS http://www.w3.org/TR/xkms2/

LTANS http://tools.ietf.org/html/draft-ietf-ltans-ltap-07

OASIS DSS Core http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html

OASIS DSS
AdES Profile

http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-AdES-spec-v1.0-
os.html

OASIS DSS-X
Visible Signature
Profile

http://docs.oasis-open.org/dss-x/profiles/visualsig/v1.0/cs01/oasis-dssx-1.0-
profiles-visualsig-cs1.html

OASIS DSS-X
Multi-Signature
Verification
Reports

http://docs.oasis-open.org/dss-x/profiles/verificationreport/oasis-dssx-1.0-
profiles-vr-cs01.html

OASIS DSS
Decryption Profile

http://www.oasis-open.org/committees/download.php/25384/oasis-
dss_profile-encryption_A-SIT_v0.1.doc

PEPPOL XKMS http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-
1.1/d1-1-part-1-background-and-scope

http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-
1.1/d1-1-part-2-etendering-pilots-specification

http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-
1.1/d1-1-part-3-signature-policies

http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-
1.1/d1-1-part-4-architecture-and-trust-models

http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-
1.1/d1-1-part-5-xkms-interface-specification

http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-
1.1/d1-1-part-6-oasis-dss-interface-specification

http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-
1.1/d1-1-part-7-eid-and-esignature-quality-classification

http://tools.ietf.org/html/rfc3852
http://pda.etsi.org/exchangefolder/ts_101733v010801p.pdf
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://pda.etsi.org/exchangefolder/ts_10277801v010101p.pdf
http://pda.etsi.org/exchangefolder/ts_10277802v010201p.pdf
http://pda.etsi.org/exchangefolder/ts_10277803v010101p.pdf
http://pda.etsi.org/exchangefolder/ts_10277804v010101p.pdf
http://pda.etsi.org/exchangefolder/ts_10277805v010101p.pdf
http://www.faqs.org/rfcs/rfc2315.html
http://www.ietf.org/rfc/rfc3851.txt
http://www.ietf.org/rfc/rfc3161.txt
http://www.ietf.org/rfc/rfc3275.txt
http://uri.etsi.org/01903/v1.3.2/ts_101903v010302p.pdf
http://www.ietf.org/rfc/rfc6960.txt
http://www.ietf.org/rfc/rfc5055.txt
http://www.w3.org/TR/xkms2/
http://tools.ietf.org/html/draft-ietf-ltans-ltap-07
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-AdES-spec-v1.0-os.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-AdES-spec-v1.0-os.html
http://docs.oasis-open.org/dss-x/profiles/visualsig/v1.0/cs01/oasis-dssx-1.0-profiles-visualsig-cs1.html
http://docs.oasis-open.org/dss-x/profiles/visualsig/v1.0/cs01/oasis-dssx-1.0-profiles-visualsig-cs1.html
http://docs.oasis-open.org/dss-x/profiles/verificationreport/oasis-dssx-1.0-profiles-vr-cs01.html
http://docs.oasis-open.org/dss-x/profiles/verificationreport/oasis-dssx-1.0-profiles-vr-cs01.html
http://www.oasis-open.org/committees/download.php/25384/oasis-dss_profile-encryption_A-SIT_v0.1.doc
http://www.oasis-open.org/committees/download.php/25384/oasis-dss_profile-encryption_A-SIT_v0.1.doc
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-1-background-and-scope
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-1-background-and-scope
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-2-etendering-pilots-specification
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-2-etendering-pilots-specification
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-3-signature-policies
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-3-signature-policies
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-4-architecture-and-trust-models
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-4-architecture-and-trust-models
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-5-xkms-interface-specification
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-5-xkms-interface-specification
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-6-oasis-dss-interface-specification
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-6-oasis-dss-interface-specification
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-7-eid-and-esignature-quality-classification
http://www.peppol.eu/work_in_progress/wp-1-esignature/results/deliverable-1.1/d1-1-part-7-eid-and-esignature-quality-classification

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 8 of 181

 CMC https://www.ietf.org/rfc/rfc2797.txt

EST https://datatracker.ietf.org/doc/rfc7030/

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 9 of 181

2 ADSS Server Overview
ADSS Server provides the following trust services:

 An optional Signing Service that supports these features:

o Documents of various formats including PDF, XML, and other files

o Creating digital signatures of various formats including PDF, XML, PKCS#7 / CMS and S/MIME
as well as ETSI XAdES, CAdES and PAdES

o Assembling signed hash values within PDF documents – useful when a hash of the document
has been signed locally using Go>Sign Desktop and it needs to be embedded

o Creating blank signature fields in PDF documents – useful when using Certify Signatures

o Working with ADSS Go>Sign Desktop to offer local sign functionality

 An optional Verification Service which supports these features:

o Documents of various formats including PDF, XML, and other files

o Verifying digital signatures of various formats including PDF, XML, PKCS#7 / CMS and S/MIME
as well as ETSI XAdES, CAdES and PAdES

o Validating X.509 digital certificates

 An optional Time Stamping Authority (TSA) service that supports these features:

o Time stamping data to independently prove that it existed at (or before) a particular date and
time. This is particularly useful for proving the time of signing and an important feature of long-
term digital signatures. This service is compliant with the IETF RFC 3161 and RFC 5816
specifications.

 An optional CRL Monitor service that supports these features:

o Download CRLs of registered CAs

o High availability of CRLs in fail over mode

 An optional XKMS Validate service which supports these features:

o Validating a full certificate chain.

 An optional Online Certificate Status Protocol (OCSP) service that supports these features:

o Providing real-time information on the revocation status of a requested certificate, returned
certificate status responses are GOOD, REVOKED or UNKNOWN. This service is compliant
with the IETF RFC 6960 specifications.

 An optional Server-based Certificate Validation Protocol (SCVP) service that supports these
features:

o Determining the path between X.509 digital certificate and a trusted root and the validation of
that path according to a particular validation policy.

 An optional Certification Service which supports these features:

o Creating Public key pairs and certifying public keys using either a local CA configured within
ADSS Server or external CAs

o Renewing keys/certificates and changing associated authorisation codes

o Revoking or suspending previously generated certificates

 An optional LTANS Service which supports these features:

o Generating and retaining timestamp evidence that shows that data is (or is not) original over
the long term

o Automatically refreshes the timestamp evidence data

o Optionally keeping and exporting the original data

o Optionally automatically deleting the retained original data

 An optional Decryption Service which supports these features:

o Decrypting encrypted documents with server held keys

ADSS Server is a JEE 6 compliant application. It is a secure and scalable security services product
that delivers trust for e-business applications and meets the CWA 14167-1 security requirements for
trustworthy systems. ADSS Server includes a flexible policy-based signing engine to suit synchronous
and asynchronous business needs. This is discussed further in the ADSS Server Admin Guide.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 10 of 181

Typically only those trust services required by the business are licensed and deployed. Evaluation
versions have a short-term license with most options enabled.

Integration with ADSS Server is easy when the ADSS Client SDK is used. This provides high level .Net
and Java APIs that make it easy to call otherwise complex web-services.

2.1 Modes of Operation
ADSS Server offers an XML web service interface that exposes the ADSS functionality on-demand to
business applications. Using a single SOAP request message, business applications can
programmatically pass parameters and data relevant to the service request to ADSS Server. The SOAP
response message from ADSS Server returns results specific to the type of request it received e.g. if a
document signing request is received then the signature or signed document is returned. Using this
mode of operation the ADSS Server can be tightly interwoven within document workflows.

The ADSS Signing Service also offers an HTTP based API for optimum performance – useful if web
service calls are considered to be too much of an overhead for a specific project.

Ascertia also provides a small number of utility business applications that call ADSS Server. These
applications provide immediate, out-of-the-box processing features to simplify certain task such as
workflow approval, bulk file processing and bulk email processing. The list of front-end applications for
ADSS Server includes:

- SigningHub (SH) is a document collaboration and approval / sign-off application that is ideal for
replacing paper based signing with an on-line web-based document tracking and digital signature
service. Users can be registered, documents can be uploaded, prepared for signature and then
shared with other users for review and sign-off. Each collaborating user is automatically notified
of new documents that require their review and approval. Documents are viewed and digitally
signed using ADSS Go>Sign Desktop under the control of the SigningHub web-application.

- Auto File Processor (AFP) is a watched folder application which regularly monitors a set of input
folders anywhere on the network for documents to be processed by ADSS Server (e.g. to be
digitally signed, verified or archived). AFP retrieves these documents and passes them to ADSS
Server for processing. The returned documents are then placed into a designated output (or
error) folder. This is an ideal solution for bulk signing, verification or archiving of documents in an
unattended automated environment.

- Secure Email Gateway (SES) is a Mail Transfer Agent (MTA) server application that monitors
emails as they are routed through the MTA. For outgoing emails it can filter emails that require
digital signature or archiving and perform this automatically by making calls to ADSS Server. Both
the signing of emails and/or signing of the attachment are supported. For incoming emails, SES
can identify emails which are signed (or contained signed attachments) and pass these to ADSS
Server for signature verification.

The above applications are described separately in their own manuals and not covered further in this
document.

2.2 ADSS Server Architecture
ADSS Server is a multi-function application that provides a range of trust services. Only the relevant
trust services are licensed and deployed to meet a business requirement. This approach enables cost-
effective deployments spanning small, large and nation organisations, multi-nationals, national PKIs
and global service providers. ADSS Server is normally discussed in terms of the following packages:

2.2.1 ADSS Enterprise Server Architecture

ADSS Enterprise Server is aimed at organisations wishing to primarily deploy digital signature creation
and verification services. It typically uses the following services and modules:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 11 of 181

The ADSS Certification Service can be included in this package if it is required to create and certify
user-based signing keys for signing and verification services.

2.2.2 ADSS Infrastructure Server Architecture

ADSS Infrastructure Server is aimed at organisations that need to deploy infrastructure services such
as a TSA, an OCSP, SCVP or XKMS VA, a CA or Archive Authority. The ADSS Infrastructure Server
can be provided with the following services and modules:

As can be seen the architecture is so flexible that a bespoke solution can be easily created.

2.3 ADSS Server Web Services Interfaces
This document provides details on the XML Schema and how to integrate with business applications.
Basic use-case examples are also provided.

The following table provides a summary of the ADSS Server web services interfaces:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 12 of 181

Service Name Function

Signing Service

ADSS digital signature
service also includes:

 Signature field creation

 Document/data hashing

 Signature assembly

Creates a digital signature according to a configured signing profile
and any allowed application supplied parameters.

Can create PDF, XML or PKCS#7 (File / Form) signatures. Various
advanced profiles such as PAdES, CAdES and XAdES are also
supported.

Create a blank signing field within a PDF document.

Calculates a hash of the data using a profile defined algorithm.
Typically used with ADSS Go>Sign Desktop1 when local user
signatures are needed and in this case the hashing is processes
within ADSS Server, whilst signing is performed locally using the
user’s soft or token based key.

Embeds a digital signature within a PDF document – typically used
with ADSS Go>Sign Desktop when it returns a signed hash value
from the user’s system and ADSS Server then embeds this within
the corresponding PDF document.

Verification Service Verifies one or more digital signatures.

Various signature formats i.e. PDF, PKCS#7/CMS, XML, S/MIME,
PAdES, CAdES and XAdES are supported. It also supports
validation of digital certificates using simple or complex validation
methods.

XKMS Service Validates a certificate chain.

Certificates can be validated against an existing defined CA chain
or via advanced validation services using DPD & DPV. (Note:
OCSP & SCVP services are not web-services)

Certification Service Allows keys and certificates to be generated for users or other
entities which can be used later for server-side signing of
documents or passed to the user or used in roamed credential
solutions for a specific application.

(Note: This service does not interact with keys and certificates
created in ADSS Server Key Manager using the ADSS Admin
Console)

LTANS Service Securely archives data or documents for long-term preservation.
Each archive object is time stamped to protect its integrity whilst in
the archive. This timestamp evidence data can be automatically
refreshed at configured timeframes. Archived objects can also be
exported and deleted by the calling applications.

Decryption Service Decrypts XML data using ADSS Server private keys.

It is typically used in conjunction with ADSS Go>Sign Desktop
where end-users sign and encrypt their document submissions.
These encrypted objects can then be decrypted and the event
audited via this web service. It provides good control for tender,
health and similar solutions.

1 The ADSS Go>Sign Desktop can be used to sign server created hashes OR hash and sign data locally.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 13 of 181

Go>Sign Service ADSS Go>Sign Service empowers business applications to
perform document signing on user’s machines using the
credentials held either locally by the user or server-side keys.
ADSS Go>Sign Service also enables business applications to
show PDF documents to users using a server-side HTML-based
Go>Sign Document Viewer. For more information on how to
integrate the Go>Sign Service in a business application see ADSS-
Go-Sign-Developers-Guide.pdf available within ADSS Client SDK
package.

RA Service Allows keys and certificates to be generated for network devices,
end users and servers. The service is accessible using XML web
services and SCEP protocol

2.4 Interfacing to the OCSP, SCVP and TSA Services
The ADSS Server OCSP, SCVP and TSA services are different to the other services and interface using
traditional HTTP or HTTPS based requests/ responses from/ to client systems using the appropriate
protocols (RFC 6960, RFC 5055, RFC 3161 and RFC 5816 respectively).

The table below summarises the function of these service interfaces. To make it easier to rapidly deploy
a solution the ADSS Client SDK provides easy to use APIs for request creation and response parsing
for the OCSP, SCVP and TSA services if a business application needs to programmatically access
these services. Other standards compliant commercial or free APIs can be used to access these
services.

Service Name Function

TSA Service Receives timestamp requests from one or more TSA clients,
optionally authenticates the request and then creates and
returns a timestamp token. The ADSS Server TSA Profiles
define the way the TSA service operates.

OCSP Service Receives OCSP certificate validation requests from one or
more OCSP clients, optionally authenticates the request and
then creates and returns the validation result, i.e. a “GOOD”,
“REVOKED” or “UNKNOWN” status for each CertID in the
request. The ADSS Server validation policy defines the way
the OCSP service operates.

SCVP Service Receives SCVP certificate validation requests from one or
more SCVP clients and optionally authenticates the request. As
requested (a) the certificate path is determined using
Delegated Path Discovery (DPD techniques) and then (b) the
certificate chain is validated using basic or advanced validation
processes. The validation result is created using the particular
validation policy and information within the SCVP request.

2.5 Integration with Business applications
Business applications communicate with ADSS Server using standard web services calls or HTTP/S as
explained above. The request is processed and ADSS Server returns an XML response wrapped in a
SOAP message in a standard HTTP/S message or just as HTTP/S

For the web services interfaces there are defined schemas for the different request/response messages
between the business application and ADSS Server. For the HTTP/S only protocols messages these
are described in the relevant RFC. If ADSS Server cannot successfully parse or process the request it
responds with an appropriate error message.

Various use cases are defined and these are described in the following sections of this manual:

 Signing Service (Sections 4 and 19)

 Create an Empty Signature Field on a PDF Document

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 14 of 181

 Sign a PDF document

 Hash a PDF Document

 Assemble a signature within a PDF document

 Verification Service (Section 5)

 Verify a signed document and validate an X509 certificate

 TSA Service (Section 8)

 Generate a timestamp token

 XKMS Service (Section 9)

 Validate an X509 digital certificate

 OCSP Service (Section 7)

 Validate an X509 digital certificate

 SCVP Service (Section 10)

 Validate an X509 digital certificate

 Certification Service (Sections 6 and 19)

 Generate a key pair and an associated digital certificate

 Renew a key pair and an associated digital certificate

 Retrieve a Private Key (PKCS#12 object) and Certificate

 Delete a key pair and its corresponding certificate

 Change the Authorisation Code associated with private key usage

 LTANS Service (Section 11)

 Securely archive, export or delete data from the ADSS Server long-term archive

 Decryption Service (Section 12)

 Decrypt encrypted XML data using private decryption keys held by ADSS Server

 Go>Sign Service (Section 13)

 Empowers business applications to perform document signing on user’s machines
using the credentials held either locally by the user or server-side keys

 RA Service (Section 20)

 Register and Revoke Certificates via XML web service interface and SCEP protocol

2.6 ADSS Server Admin Guide
Most commonly used administration tasks are performed using ADSS Server Admin Console. The
ADSS Server Admin Guide describes how to configure the ADSS Server with the keys, certificates,
trust anchors, profiles etc. that are required to process business application requests. Also, to make
use of the sample programs and demos, an option in the ADSS Server installation wizard enables
sample data to be inserted to simplify and automate the server configuration for testing purposes. The
sample data is required for the sample programs and ADSS Server Test Tool to work.

2.7 Service URLs
To make use of the ADSS Server services, business applications send HTTP(S)/SOAP requests to the
URLs shown below. This task is simplified using the ADSS Client SDK .Net and Java APIs:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 15 of 181

Service Name Default ADSS Address

Signing Service

(Digital signature
creation request
over OASIS DSS
and HTTP modes)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/signing/dss (For DSS

Mode)

https://<ADSS machinename>:8779/adss/signing/hdsi (For HTTP

Mode)

TLS with Server authentication only:

https://<ADSS machinename>:8778/adss/signing/dss (For DSS

Mode)

https://<ADSS machinename>:8778/adss/signing/hdsi (For HTTP

Mode)

Plain HTTP:

http://<ADSS machinename>:8777/adss/signing/dss (For DSS

Mode)

http://<ADSS machinename>:8777/adss/signing/hdsi (For HTTP

Mode)

Signing Service
(Empty Signature
Field creation
request over
Ascertia XML and
HTTP modes)

TLS with client-server authentication:
https://<ADSS machinename>:8779/adss/signing/esi (For

Ascertia XML Mode)

https://<ADSS machinename>:8779/adss/signing/hesi (For HTTP

Mode)

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/signing/esi (For

Ascertia XML Mode)

https://<ADSS machinename>:8778/adss/signing/hesi (For HTTP

Mode)

Plain HTTP:

http://<ADSS machinename>:8777/adss/signing/esi (For

Ascertia XML Mode)

http://<ADSS machinename>:8777/adss/signing/hesi (For HTTP

Mode)

Signing Service

(Document hashing
request over
Ascertia XML and
HTTP modes)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/signing/dhi (For

Ascertia XML Mode)

https://<ADSS machinename>:8779/adss/signing/hdhi (For HTTP

Mode)

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/signing/dhi (For

Ascertia XML Mode)

https://<ADSS machinename>:8778/adss/signing/hdhi (For HTTP

Mode)

Plain HTTP:

http://<ADSS machinename>:8777/adss/signing/dhi (For

Ascertia XML Mode)

http://<ADSS machinename>:8777/adss/signing/hdhi (For HTTP

Mode)

https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 16 of 181

Signing Service

(Signature
assembly request
over XML and
HTTP modes)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/signing/sai (For

Ascertia XML Mode)

https://<ADSS machinename>:8779/adss/signing/hsai (For HTTP

Mode)

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/signing/sai (For

Ascertia XML Mode)

https://<ADSS machinename>:8778/adss/signing/hsai (For HTTP

Mode)

Non TLS:

http://<ADSS machinename>:8777/adss/signing/sai (For

Ascertia XML Mode)

http://<ADSS machinename>:8777/adss/signing/hsai (For HTTP

Mode)

Verification Service
(Signature
verification request
over OASIS DSS
mode)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/verification/dss

(For DSS Mode)

https://<ADSS machinename>:8779/adss/verification/hsvi

(For HTTP Mode)

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/verification/dss

(For DSS Mode)

https://<ADSS machinename>:8778/adss/verification/hsvi

(For HTTP Mode)

Non TLS:

http://<ADSS machinename>:8777/adss/verification/dss

(For DSS Mode)

http://<ADSS machinename>:8777/adss/verification/hsvi

(For HTTP Mode)

TSA Service

(TimeStampReq
according to RFC
3161/5816)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/tsa

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/tsa

Non TLS:

http://<ADSS machinename>:8777/adss/tsa

XKMS Service

(ValidateRequest
according to XKMS
2.0)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/xkms

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/xkms

Non TLS:

http://<ADSS machinename>:8777/adss/xkms

OCSP Service

(OCSPRequest
according to RFC
6960)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/ocsp

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/ocsp

Non TLS:

http://<ADSS machinename>:8777/adss/ocsp

https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 17 of 181

SCVP Service
(CVRequest
according to RFC
5055)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/scvp

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/scvp

Non TLS:

http://<ADSS machinename>:8777/adss/scvp

Certification Service
(Certification
request over
Ascertia XML, EST
and CMC modes).
CMC mode is only
supported over
HTTPS with client
server
authentication

TLS with client and server authentication:
https://<ADSS machinename>:8779/adss/certification/csi

(Ascertia XML Mode)

https://<ADSS machinename>:8779/adss/certification/cmc (CMC

Mode)

https://<ADSS machinename>:8779/.well-

known/est/simpleenroll (EST Mode)

https://<ADSS machinename>:8779/.well-

known/est/simplereenroll (EST Mode)

https://<ADSS machinename>:8779/.well-known/est/fullcmc

(EST Mode)

https://<ADSS machinename>:8779/.well-

known/est/serverkeygen (EST Mode)

https://<ADSS machinename>:8779/.well-known/est/cacerts

(EST Mode)

TLS with server authentication only:
https://<ADSS machinename>:8778/adss/certification/csi

(Ascertia XML Mode)

https://<ADSS machinename>:8778/.well-

known/est/simpleenroll (EST Mode)

https://<ADSS machinename>:8778/.well-

known/est/simplereenroll (EST Mode)

https://<ADSS machinename>:8778/.well-known/est/fullcmc

(EST Mode)

https://<ADSS machinename>:8778/.well-

known/est/serverkeygen (EST Mode)

https://<ADSS machinename>:8778/.well-known/est/cacerts

(EST Mode)

No TLS:
http://<ADSS machinename>:8777/adss/certification/csi

(Ascertia XML Mode)

http://<ADSS machinename>:8777/.well-known/est/simpleenroll

(EST Mode)

http://<ADSS machinename>:8777/.well-

known/est/simplereenroll (EST Mode)

http://<ADSS machinename>:8777/.well-known/est/fullcmc (EST

Mode)

http://<ADSS machinename>:8777/.well-known/est/serverkeygen

(EST Mode)

http://<ADSS machinename>:8777/.well-known/est/cacerts (EST

Mode)

LTANS Service
(LTAPRequest
according to draft-
ietf-ltans-ltap-07)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/ltap (For XML mode)

https://<ADSS machinename>:8779/adss/hltans (For HTTP mode)

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/ltap (For XML mode)

https://<ADSS machinename>:8778/adss/hltans (For HTTP mode)

Non TLS:

http://<ADSS machinename>:8777/adss/ltap (For XML mode)

http://<ADSS machinename>:8777/adss/hltans (For HTTP mode)

https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 18 of 181

Decryption Service
(EncryptRequest
according OASIS
DSS Encryption
Profile)

TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/decryption

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/decryption

Non TLS:

http://<ADSS machinename>:8777/adss/decryption

Go>Sign Service TLS with client-server authentication:

https://<ADSS machinename>:8779/adss/gosign/service

TLS with server authentication only:

https://<ADSS machinename>:8778/adss/gosign/service

Non TLS:

http://<ADSS machinename>:8777/adss/gosign/service

RA Service (RA
request over
Ascertia XML and
SCEP modes).

TLS with client and server authentication:
https://<ADSS machinename>:8779/adss/ra/cri (Ascertia XML

Mode)

https://<ADSS machinename>:8779/adss/ra/scep (SCEP Mode)

TLS with server authentication only:
https://<ADSS machinename>:8778/adss/ra/cri (Ascertia XML

Mode)

https://<ADSS machinename>:8778/adss/ra/scep (SCEP Mode)

No TLS:
http://<ADSS machinename>:8777/adss/ra/cri (Ascertia XML

Mode)

http://<ADSS machinename>:8777/adss/ra/scep (SCEP Mode)

The ADSS Client SDK provides easy to use libraries written in the JAVA and .Net programming
languages to minimise application integration development effort. Using these libraries business
applications can be developed easily and quickly, whilst minimizing errors.

The use of ADSS Client SDK is strongly recommended to substantially reduce development time. There
is no need to create XML writers and parsers for the web-service protocol. If it is necessary to write
bespoke requests or to use a development language incompatible with Java or .Net APIs then it is
important to ensure that the requests comply with the corresponding schema file and are compliant with
the schema details detailed later in this manual

Sample source code is provided and the readme.html file in the ADSS Client SDK folder gives
further information on the sample directory structure and how to run them.

2.8 ADSS Server Interface Schema

The following table lists the schema files associated with each ADSS Server service. These are located
inside the schema folder provided with ADSS Client SDK.

Service Schema File

Signing xmldsig-core-schema.xsd (W3C specification for XML Digital
Signature core schema)

 oasis-dss-core-schema-v1.0-os.xsd (OASIS DSS core schema)

 oasis-dss-profiles-AdES-schema-v1.0-os.xsd (OASIS DSS profile
for advanced electronic signatures i.e. PAdES, CAdES, XAdES)

 oasis-dss-vissig-schema-v1.0-cd1.xsd (OASIS DSS profile for
visible signatures i.e. PDF/PAdES)

https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/
https://vas/

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 19 of 181

 adss-dss-extensions.xsd (OASIS DSS extension schema – Ascertia
specific enhancements in DSS protocol e.g. supporting authorized
signatures)

Verification xmldsig-core-schema.xsd (W3C specification for XML Digital

Signature core schema)

 oasis-dss-core-schema-v1.0-os.xsd (OASIS DSS core schema)

 oasis-dssx-1.0-profiles-vr-cd1.xsd (OASIS DSS-X profile for
comprehensive signature verification report)

 oasis-dss-profiles-AdES-schema-v1.0-os.xsd (OASIS DSS profile
for advanced electronic signatures i.e. PAdES, CAdES, XAdES)

 dss_peppol_extensions.xsd (OASIS DSS profile for PEPPOL
compliance)

TSA The protocol’s ASN.1 specification is available from:

http://www.ietf.org/rfc/rfc3161.txt

XKMS xkms.xsd (W3C XKMS schema)

 xmldsig-core-schema.xsd (W3C specification for XML Digital
Signature core schema)

 xenc-schema.xsd (W3C XML Encryption schema – internally used
by XKMS Schema)

 xkms_custom_extensions.xsd (Ascertia extension in W3C XKMS
schema e.g. sending request authentication parameters like
Originator ID)

 xkms_peppol_extensions.xsd (XKMS extensions for PEPPOL
compliance)

The W3C specification is available at from:

http://www.w3.org/TR/xkms2/

OCSP The protocol’s ASN.1 specification is available from:
http://www.ietf.org/rfc/rfc6960.txt

SCVP The protocol’s ASN.1 specification is available from:
http://www.ietf.org/rfc/rfc5055.txt

Certification adss-dss-extensions.xsd (ADSS Certification Service schema –
Ascertia proprietary protocol)

For CMC the protocol’s ASN.1 specification is available from:
http://www.ietf.org/rfc/rfc5272.txt

For EST the protocol’s ASN.1 specification is available from:

https://www.ietf.org/rfc/rfc7030.txt

LTANS ltan.xsd (IETF LTANS schema)

 ers.xsd (ERS schema - Evidence Record Structure)

The XML specification is available from:

http://tools.ietf.org/html/draft-ietf-ltans-ltap-07

Decryption encryption_profile_0.4.xsd (OASIS DSS profile for data encryption
and decryption)

The protocol specification is available at:

http://www.oasis-open.org/committees/download.php/25384/oasis-
dss_profile-encryption_A-SIT_v0.1.doc

RA adss-ra.xsd (ADSS RA Service schema – Ascertia proprietary
protocol)

http://www.ietf.org/rfc/rfc3161.txt
http://www.w3.org/TR/xkms2/
http://www.ietf.org/rfc/rfc6960.txt
http://www.ietf.org/rfc/rfc5055.txt
http://www.ietf.org/rfc/rfc5272.txt
http://tools.ietf.org/html/draft-ietf-ltans-ltap-07
http://www.oasis-open.org/committees/download.php/25384/oasis-dss_profile-encryption_A-SIT_v0.1.doc
http://www.oasis-open.org/committees/download.php/25384/oasis-dss_profile-encryption_A-SIT_v0.1.doc

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 20 of 181

2.8.1 WSDL Files

Service Schema File

Signing dss.wsdl (WSDL for OASIS DSS protocol)

Verification dss.wsdl (WSDL for OASIS DSS protocol)

XKMS xkms.wsdl (WSDL for W3C XKMS specification)

Certification certification.wsdl (WSDL for ADSS Certification Service – based on
Ascertia proprietary protocol)

LTANS ltap.wsdl (WSDL for IETF LTAP protocol)

Decryption encryption.wsdl (WSDL for OASIS DSS profile for data encryption
and decryption)

Attribute Authority aa.wsdl (WSDL for attribute authority based on Ascertia proprietary
protocol)

Registration
Authority

 ra.wsdl (WSDL for registration authority based on Ascertia proprietary
protocol)

2.8.2 Protocol Dependencies

There are a number of schema files which are referenced by the protocols implemented by ADSS
Server. These schemas and their elements are not directly used by any of service in ADSS Server but
these may be needed by clients to be able to compile and generate code at their end.

o oasis-sstc-saml-schema-protocol-1.1.xsd

o saml-schema-assertion-2.0.xsd

o schema.xsd

o soap-envelope.xsd

o XAdES.xsd

2.9 ADSS Client SDK (Java and .Net versions)
The ADSS Java and .Net libraries contain all the necessary components to create HTTP and web
services requests that are understood by ADSS Server. The requests may be based upon open
standards (e.g. OASIS) or they may use the faster Ascertia defined protocols.

In the main body of the document the various API methods are briefly described with examples using a
.Net (C#) syntax. The equivalent Java calls are almost identical so this should not present a problem
for Java developers. In addition to this, full documentation of the various classes and methods is
available in the JavaDoc (Java) and SandCastle (C#) class documentation which comes as part of the
ADSS Client SDK download.

2.9.1 Using the Java API

The Java API components performs behind the scenes XML marshalling using third party JAXB and
send the request/receive response using SOAP communication packages (supplied with ADSS Client
SDK) and thus the calling application has to write only few lines of code to build a working application.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 21 of 181

Using non-default XML Parser and XML Transformer implementations with
ADSS Client SDK (Java)

A system property flag is used to instruct the ADSS Client SDK to use abstract classes for the
XML Parser and XML Transformer implementation instead of using proprietary classes. The
system property can be set as:

System.setProperty("com.ascertia.adss.client.api.xml.impl","SYSTEM");

By setting this property, business applications can specify the available XML Parser and XML
Transformer implementation. The ADSS Client SDK checks this property, and then loads the
system default implementation OR the implementation requested via the following system
properties:

System.setProperty("javax.xml.parsers.DocumentBuilderFactory",

"<DocumentBuilderFactory implementation class>");

2.9.2 Using the .Net API

Similarly the .Net API components perform the XML marshalling and SOAP message handling:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 22 of 181

2.9.3 HTTP/S Protocol API Code

The Java and .Net APIs also provide classes for sending requests and receiving responses for the
HTTP/S only services.

In the following sections of this manual, the API classes relevant to each service are discussed.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 23 of 181

3 Message, Request and Response Classes
This section provides descriptions of the Message, Request and Response classes with their respective
methods which are inherited by other classes described in subsequent sections of this guide.

The following sub-sections briefly describe these classes but full documentation is also available in the
JavaDoc (Java) and SandCastle (C#) class documentation which comes as part of the ADSS Client
SDK download.

The Java API provides the required classes under the package:

com.ascertia.adss.client.api

The .Net /C# API provides the required classes under the namespace:

Com.Ascertia.ADSS.Client.API

3.1 Message Class

The Message class is an abstract class that acts as a base class to the Request and Response

classes. It has the following three methods:

Message Class Method Purpose

ToString()returns string Returns the textual representation of an XML output. It
overrides the Object.ToString() method.

WriteTo(Stream outStream) Writes the XML output to the given output stream.

WriteTo(string filePath) Writes the XML output to the given file path.

3.2 Request Class
The Request class provide a number of common methods that are inherited by the more specific request
classes.

The following is a list of methods of the Request Class (in addition to the ToString and WriteTo

methods described above):

Request Method Purpose

Send(string url) returns

Response
Sends the request to the ADSS service on the specified URL.
This is a virtual method that is sometimes overridden by

the specific service request class.

The resultant Response object is that of the corresponding

service response class and contains parsed response or error
information.

SetProxy(string host, int

port) or

SetProxy(string host, int

port, string userName,

string password, bool

digest)

Specifies proxy information if the client application is behind a
proxy. Two variants are available for this method.

 Com.Ascertia.ADSS.Client.API.Request.PROXY_AU
THENTICATION

 Com.Ascertia.ADSS.Client.API.Request.SERVER_A
UTHENTICATION

SetRequestID(string

requestID)
Unique ID assigned to the request.

Note: Request ID can contain only alphanumeric chars, a
hyphen, and dash other chars are not allowed.

SetRequestRetries(int

requestRetries)
Specifies the number of client retries when making the request
to the service.

SetRespondAddress(string

respondAddress)
Specifies the address where the response will be sent. This is
currently not implemented.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 24 of 181

SetSigningCredentials

(X509Certificate2

requestSigningKey)

or

SetSigningCredentials(str

ing pfxFilePath, string

password)

Specifies the signing credentials that will be used to sign the
request. This is provided either as a:

 private key and certificate chain, or a

 PFX or PKCS#12 file.

The latter method is defined as virtual and may be

overridden.

SetSigningMode(string

signingMode)
Specifies the XML request signing mode. The possible values
are:

- SIGNING_MODE_DETACHED

- SIGNING_MODE_ENVELOPED

- SIGNING_MODE_ENVELOPING

SIGNING_MODE_ENVELOPED is the default mode if not set by the
client.

SetSoapVersion(string

soapVersion)
Specifies the version of the SOAP message. The possible
values are:

- SOAP_VERSION_1_1

- SOAP_VERSION_1_2

If the client does not set the soap version then
SOAP_VERSION_1_1 used as a default.

(Note that OASIS DSS requires the use of
SOAP_VERSION_1_2 to be compliant with the standard).

SetSslClientCredentials(

X509Certificate2 sslKey)

or

SetSslClientCredentials(

string pfxFilePath,

string password)

Specifies the TLS client credentials that will be used for TLS
client authentication, either as a:

 Private key and certificate chain, or a

 PFX or PKCS#12 file.

 Password to decrypt the PKCS#12 file

Note: The TLS Server authentication certificate must include
machine Name/Domain Name/IP Address of the relevant
ADSS Server in certificate's Common Name (and also as SAN
extension if there are multiple domain names).

SetSslTrustStore(String

truststorePath, String

truststorePassword)

Specifies the trust store for the TLS server certificate.

SetTimeout(int timeout) Specifies the communication timeout for the request in
seconds. Default value is 60 secs.

SetApplicationName

(String)
Set client’s application name.

SetVerifyResponse(bool

verifyResponse)
Specifies whether the client application needs to verify the
service response signature or not. By default, it does not verify
the response.

3.2.1 Using SSL /TLS

To use SSL/TLS a secure SSL/TLS channel must be established and this requires that the following
are properly set up:

 Make sure the ADSS Server, TLS Server authentication certificate, configured in Global
Settings > System Certificates, has the ADSS Server machine name/IP as its common name
(CN).

 Make sure the client application can trust the ADSS Server TLS Server authentication
certificate.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 25 of 181

 Make sure the issuer of the client authentication certificate is registered within the ADSS Server
Trust Manager with the purpose "CA for verifying TLS client certificates".

 Make sure the ADSS Server Windows/Daemon services have been restarted after making the
above configurations.

For ADSS Client SDK .Net, before calling the SDK classes this requires the following to be properly
set up:

ServicePointManager.SecurityProtocol = SecurityProtocolType.Ssl3 |

SecurityProtocolType.Tls12 | SecurityProtocolType.Tls11 |

SecurityProtocolType.Tls;

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 26 of 181

3.3 Response Class
The Response class provides a number of common methods that are inherited by the more specific
response classes.

The following is a list of methods of the Response Class (in addition to the ToString and WriteTo
methods described above):

Response Method Purpose

ContainsException()

returns bool
Returns true if there was an error while processing the
request. If so, the Exception object is also set.

GetErrorCode() returns

int
Returns the service specific error code in the case of request
process failure.

GetErrorMessage() returns

string
Returns the user friendly error message in the case of request
process failure.

GetException() returns

Exception
Returns the Exception object for the case of request process
failure.

GetRequestId() returns

string
Returns the request Id of the corresponding request.

GetSigningCertificates()

returns X509certificate[]
Returns the XML response signing certificate chain.

GetStatus() returns

string
Returns the status of the request.

The actual text will vary depending upon the service and mode
of operation (e.g. Ascertia mode, OASIS DSS mode etc.)

For Ascertia mode, the status message is either Success or

Failed.

For OASIS DSS mode, the returned status message is the
Result Major status, which is one of the following:

- Success

- Requester Error

- Responder Error

- Insufficient Information

For the LTAP (long-term archiving protocol) the returned
message is either granted or rejected.

IsSuccessful() returns

bool
Returns true if request processing has completed

successfully and does not indicate for example whether the
request has a positive or negative result (e.g. whether a
certificate validated or a signature verified).

In OASIS DSS mode, for example, as a minimum, it is
necessary to look at the Result Major and Result Minor

status messages to determine if all the signatures were fully
valid.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 27 of 181

4 ADSS Signing Service
The ADSS Server Signing Service provides the following types of signature services:

 OASIS DSS Compliant Document Signing (PDF, XML and PKCS7 signatures)

 OASIS DSS AdES Profile for Advanced Signature Formats (XAdES, CAdES and PAdES)

 Digital signatures with authorised remote signing through RAS/SAM

 Ascertia Specific Signing Utility Classes for:

 Document Hashing and Assembly

 (PDF) Visible Signature Field creation & optional signing

Business Client Applications send requests to ADSS Server and receive responses back. Normally
most signing parameters do not need to be sent in the request as they are already set up in a Signing
Profiles at ADSS Server.

All the Trust Services shown above can be provided either by ADSS Server or can be external.

The protocol used for the OASIS compliant services is based on the OASIS Digital Signature Service
Core Protocols, Elements and Bindings specification (oasis-dss-core-spec-v1.0-os). Messages are
wrapped in a SOAP message and sent using HTTP; or sent directly using HTTP POST without SOAP
(in enhanced performance mode).

The protocol used for the Ascertia specific (signing) utility classes is Ascertia proprietary and uses either
SOAP or HTTP POST. The protocol schemas are described in section 19. Various signing use cases
are possible using the ADSS Signing Service and these are also described in section 19.

4.1 Digital Signature Standards
Digital signatures created by ADSS Server are open standards compliant and can include timestamps
and revocation information. The following signature types are supported:

Supported Signature Types (ascertia.com)

4.2 Setting up Signing Service Profiles
The ADSS Signing Service requires that Signing Profiles are defined at ADSS Server. These profiles
identify the type of document (e.g. PDF) and type of signature required (e.g. PDF certifying signature
with embedded timestamp and revocation information) and any other settings that may be required.

Refer to the following online admin guide for an explanation of Signing Profile settings:

Step 4 - Configuring Signing Profile (ascertia.com)

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/supported_signature_types.html
https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/step4_configuring_signing_profil.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 28 of 181

4.3 The Signing Service API
In order to simplify the use of the OASIS DSS and Ascertia proprietary HTTP protocols, a Signing
Service API is provided as part of the ADSS Client SDK.

This API consists of the following Request and Response classes:

 Signing: Used for XML and PKCS7/CMS signatures.

 PDF Signing: Used for creating PDF signatures. For quick introduction, refer to “A Quick Guide
for using PDF Signatures within ADSS Server” guide.

 Empty Signature Field Creation: Used to create a blank signature field within a PDF document
and optionally to sign the PDF document.

 Document Hashing: Used where ADSS Server performs the hash operation but the signing
operation is performed on the client side.

 Signature Assembly: Used after client side signing to assemble the completed signature

4.4 Signing Request and Response Classes

The Signing Request Class is used with any file type to add a PKCS7/CMS signature and with XML
documents to add an XML digital signature.

The following constructor is used to build the initial Signing Request message. There are different
variants depending upon the source of the document to be signed i.e. whether the document is

referenced as a file path, or provided directly as a Stream or byte[].

var signingRequest = new SigningRequest(clientID, document,

documentMimeType);

4.4.1 Signing Request methods

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the Signing Request Class:

Signing Request Method Purpose

AddDocument(string

filepath or byte[])
Specifies additional documents or data to be signed. This
method may be called multiple times if multiple documents
are covered by the same request.

AddSignedAuthorisation(

string, byte[] or

XMLDocument)

Adds a single Signed Authorisation file to the signing
request. This method can be called multiple times when
there is more than one authoriser.

Authorisation files (ready for signing by the authorisers) can
be created with the Authorisation Data utility class - see
section 17.1.

Authorised signing requests are only
supported using web-services.

Authorisation profiles are described in the
online admin guide:

Authorisation Profiles (ascertia.com)

RequestContentTimeStamp(bo

ol)
If set to true, this requests the addition of a content time
stamp into the signature.

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/authorisation_profiles.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 29 of 181

requestCounterSignature(bo

ol)
If set to true, this requests the addition of counter signature
as an unsigned attribute in the signature.

RequestSigningTime(bool) If set to true, this request the addition of the signing time into
the signature.

SetCertificateAlias

(string)
Specifies a certificate alias to identify the ADSS Server held
key that will be used to sign the document.

SetCertificatePassword

(string)
Supplies the password to use (unlock) the private key
associated with the above managed certificate.

Moreover, the password would be used to authenticate user
at the time of remote authorised signing.

SetProfileId (string) Specifies the Signing Profile identifier.

SetRequestMode (Int32) Specifies the request mode (one of):

- Request.HTTP (Default mode)

- Request.DSS

In high performance HTTP mode, the document is placed in
the HTTP body while other information is placed in the HTTP
header.

In OASIS DSS mode, a message is created by following the
OASIS DSS specification. This is then wrapped in a SOAP
message and sent using the HTTP protocol.

Note: The mode parameter is important as it can affect how
the response status is handled.

SetSignatureForm (string) This method is used when upgrading an existing signature
to an extended form. These signature types are described
here:

Supported Signature Types (ascertia.com)

For example, to extend a basic signature to include a
timestamp the parameter required is:

SigningRequest.SIGNATURE_FORM_ES_T

SetCity (string) Specifies the city used as Signed attribute in XAdES
signature generation.

SetStateOrProvince

(string)
Specifies the state/province used as a signed attribute in
CAdES/XAdES signature generation.

SetPostalCode (string) Specifies the postal code used as a signed attribute in
CAdES/XAdES signature generation.

SetCountryName (string) Specifies the country name used as a signed attribute in
CAdES/XAdES signature generation.

SetSignerRole (string) Specifies the signer role used as a signed attribute in
PAdES/CAdES/XAdES signature generation.

SetCommitmentTypeIdentifie

r (string)
Specifies the commitment type identifier used as a signed
attribute in PAdES/CAdES/XAdES signatures. If the
signature type is PAdES then it is tightly associated with
signature policy settings. It will be included when explicit
signature policy is available. The following commitment
types are supported:

- PROOF_OF_APPROVAL

- PROOF_OF_CREATION

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/supported_signature_types.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 30 of 181

- PROOF_OF_DELIVERY

PROOF_OF_ORIGIN

PROOF_OF_RECEIPT

- PROOF_OF_SENDER

SetCommitmentTypeQualifier

(string)
Specify the commitment type qualifier to include additional
qualifying information on the commitment made by the
signer. Used in conjunction with
SetCommitmentTypeIdentifier(String) method.

Note: If null is set than the value set for

setCommitmentTypeIdentifier(String) is used for

this parameter.

SetSignaturePolicyOID(stri

ng)
Specifies the signature policy OID used as Signed attribute
in PAdES/CAdES/XAdES signature generation. Used in
conjunction with SetLocalHash method.

SetSignaturePolicyURI(stri

ng)
Specifies the signature policy URI used as Signed attribute
in PAdES/CAdES/XAdES signature generation. Used in
conjunction with SetLocalHash method.

SetSignaturePolicyUserNoti

ce(string)
Specifies the signature policy user notice used as Signed
attribute in PAdES/CAdES/XAdES signature generation.
Used in conjunction with SetLocalHash method.

SetPolicyDocument(byte[]) Specifies the signature policy document used as Signed
attribute in PAdES/CAdES/XAdES signature generation.
Used in conjunction with SetLocalHash method.

SetDocumentFormat (string) Specifies the document format of the data object used as a
signed attribute in the CAdES/XAdES signature generation.

In case of CAdES/MS Office signatures document format
must be an OID e.g. “1.2.3.4.5”

Note: MS Office signatures document format supported only
on the HTTP interface.

In case of XAdES signatures document format can be any
string.

RequestContentTimeStamp

(bool)
Flag to add the content timestamp in the
PAdES/CAdES/XAdES signature.

RequestSigningTime (bool) Flag to add the signing time in the PAdES/CAdES/XAdES
signature.

RequestCounterSignature

(bool)
Flag to create counter signature in PAdES/CAdES/XAdES
signature.

SetLocalHash(bool) If set to true this causes the client SDK to locally hash the

document. Just the hash value is then sent to ADSS Server
for signing.

Local hashing can reduce network data transfer and
maintain document confidentiality if this is an issue.

SetDocumentLock(bool) If set to true the document will be locked after signing

operation, only works when local hash is set to true.

SetListOfFieldsToLock(Arra

yList

a_listOfFieldsToLock)

Specifies the list of fields to be locked after signing operation,

only works when local hash is set to true.

AddFieldToLock(String

a_strFieldName)
Specifies the field name to be locked after signing operation,
only works when local hash is set to true.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 31 of 181

SetLocalDigestAlgorithm(st

ring)
Specifies the hash algorithm to be used in the case of local
document hashing.

SetSignerCertificate(strin

g or X509Certificate)
Specifies the signing certificate in case of:

 Local document hashing.

 Common name to be used for “Signed By” attribute
in signature.

 When routing request to RAS/SAM Gateway as user
key is not available at the relevant gateway to
generate the signature structure.

SetSignerCertificateChain(

X509Certificate[])
Set the signing certificate chain.

SetSignatureMode(string) Specifies the signature mode e.g. Enveloped/Enveloping

SetSignatureHash(bool) If set to true the final hash would be sent to ADSS server. If
false, only structure of the document would be sent and final
hash would be computed by ADSS Server.

SetRevocationInformationOC

SP(List)
Set revocation information in form of OCSP Responses.

SetRevocationInformationCR

L(List)
Set revocation information in form of CRLs.

SetSigningElementName

(string)
XML part signing based on XML element names or XPath
expressions. Multiple values can be comma separated e.g.
‘ContractName,ContractDate’ or
‘//ContractName,//ContractDate’

IsDocumentSigned() returns

bool
Checks if the provided document already signed or not.

This method is helpful in deciding whether to send an
already signed document for signing to ADSS Server or skip
it.

setUserID (string) User ID used to maintain unique user identification at the
RAS/SAM server. It is a mandatory parameter in the remote
authorised signing request.

Note: It is only supporting on HTTP interface.

setDataToBeDisplayed

(string)
Display message to help the remote authorised signer to
know what he is going to sign. This message will be shown
on the user mobile device. Message should be in base64
format to maintain multilingual characters.

It is an optional parameter in the remote authorised signing
request.

Note: It is only supporting on HTTP interface.

setDocumentID (string) Set document ID for identification of a document..

Note: It is only supporting only on HTTP interface.

setDocumentName (string) A friendly name of the document. Its an optional parameter
and used only in case of authorised remote signing using
RAS/SAM services.

Note: It is only supporting only on HTTP interface.

SetSamlAssertion (string) SAML assertion would be used to authenticate user at the
time of remote authorised signing. It is an optional parameter
in the remote authorised signing request.

Note: It is only supporting on HTTP interface.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 32 of 181

EmbedSignatures

(List<byte[]>)
This method takes signatures in a list for assembly in the
signing documents. Assembly operation will perform in the
client SDK.

Note: This method will be applicable on the time of local
hash with remote authorised signing. ADSS Signing Server
supports remote authorised signing on HTTP interface only.

setTransactionID (string) Set transaction ID to check status of the pending signing
request.

setXmlObjectID (string) Set Object ID for identification of xml document content.

Note: It is only supports on HTTP interface.

4.4.2 Sending the Signing Request

Once the signing request message has been constructed using the above methods, it can be sent to
ADSS Server using the following call:

var signingResponse = (SigningResponse)signingRequest.Send(string URL);

The URL is that of the Signing Service e.g. http://machine-name:8777/adss/signing/dss or

http://machine-name:8777/adss/signing/hdsi when using HTTP mode.

4.4.3 Example of creating and sending a Signing Request

4.4.4 Signing Response Methods

The following methods are inherited from the generic Response and Message classes and are
described in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetRequestID, GetSigningCertificates, GetStatus,

IsSuccessful.

In addition, the following methods are specific to the Signing Response Class:

Signing Response Method Purpose

GetDocument() returns

byte[]
Returns the signed document.

GetDocuments() returns

ArrayList
Returns all the signed documents.

GetProfileId() returns

string
Returns the Signing Profile ID used by the ADSS Signing
Service to process the request.

GetResultMajor() returns

string
(Used in OASIS DSS protocol mode).

The Result Major status message provides the main result
from processing the signing request. The status can be one
of the following:

- Success

http://localhost:8777/adss/signing/dss
http://localhost:8777/adss/signing/hdsi

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 33 of 181

- Requester Error

- Responder Error

- Insufficient Information

GetResultMinor() returns

string
(Used in OASIS DSS protocol mode).

The possibilities for the Result Minor status messages
depend upon the Result Major message.

For Result Major = Success, Result Minor values are:

- valid:signature:OnAllDocuments

- valid:signature:NotAllDocumentsReferenced

- invalid:IncorrectSignature

- valid:signature:HasManifestResults

- valid:signature:InvalidSignatureTimestamp

For Result Major = Requester Error, Result Minor values are:

- ReferencedDocumentNotPresent

- MoreThanOneRefUriOmitted

- InvalidRefUri

- NotParseableXMLDocument

- NotSupported

- InappropriateSignature

(Other values are possible)

For Result Major = ResponderError, Result Minor values
are:

- GeneralError

- KeyLookupFailed

(Other values are possible)

For Result Major = Insufficient Information, Result Minor
values are:

- CrlNotAvailable

- OcspNotAvailable

- CertificateChainNotComplete

GetXmlDocument() returns

XmlDocument
Returns the signed XML document.

PublishDocument(string

/Stream)
Publishes the signed document to the specified path or
stream.

GetTransactionID() returns

string
Return pending signing request transaction ID to check its
status later on.

GetHtmlPage() returns

String
Returns a RAS internal authorisation HTML page.

This HTML is returned by Signing Service when configured
for remote authorisation signing with RAS and an Go>Sign
mobile is configured at RAS for user authentication/
authorisation. The business application then needs to load
this page in browser window.

GetRedirectURI returns

String
Returns the redirect URI of the external IdP or RAS internal
authorisation page.

This URI is returned by Signing Service when configured for
remote authorisation signing with RAS and an IdP is
configured at RAS for user authentication/authorisation. The
business application then needs to navigate the user to this
URI.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 34 of 181

4.5 PDF Signing Request and Response Classes
The PDF Signing Request Class is used to add signatures to PDF files.

The following constructor is used to build the initial PDF Signing Request message. There are different
variants depending upon the source of the document to be signed i.e. whether the document is

specified as a file path, Stream or byte[].

var pdfSigningRequest = new PdfSigningRequest(string clientID, document);

4.5.1 PDF Signing Request methods

The following methods are inherited from the Sign Request class and described in section 4.4.1:

AddDocument, AddSignedAuthorisation, RequestContentTimeStamp,

requestCounterSignature, RequestSigningTime, SetCertificateAlias,

SetCertificatePassword, SetCommitmentTypeIdentifier, SetProfileId,

SetRequestMode, SetSignatureForm/

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send (overridden), SetProxy, SetRequestID,

SetRequestRetries, SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

The following additional methods are specific to the PDF Signing Request:

PDF Signing Request Method Purpose

AddSignaturePosition(<visi

ble signature parameters>)
Supplies a list of parameters to fully specify a signature
position and appearance.

AddEmptySignatureFieldPosi

tion(<visible signature

field parameters>)

Supplies a list of parameters to fully specify an empty
signature field position. It can be used only for local hashing.

SetCertifyPermission(int) Sets the certifying signature permission value for only local
hashing. The value can be one of:

 PdfSigningRequest.CERTIFIED_FORM_FILLING

 PdfSigningRequest.CERTIFIED_FORM_FILLING_A

ND_ANNOTATIONS

 PdfSigningRequest.CERTIFIED_NO_CHANGES_ALL

OWED

Note: When generating PAdES_LT / PAdES_LTV
signatures in case of local hashing then certify permission
CERTIFIED_NO_CHANGES_ALLOWED will be ignored.

SetHashAlgorithm(string) Specifies the hash algorithm OID to be used in the case of
local document hashing.

SetLocalHash(bool) If set to true this causes the client SDK to locally hash the

document after possibly applying various signature fields
(e.g. signature appearance, signed by etc.). Just the hash
value is then sent to ADSS Server for signing.

Local hashing can reduce network data and maintain PDF
document confidentiality if this is an issue.

Note: Supported hashing algorithms for client side hashing
are SHA1, SHA256, SHA384, SHA512

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 35 of 181

SetSignatureAppearance(str

ing or byte[])
Specifies a signature appearance XML file.

SetSignerCertificate(strin

g or X509Certificate)
Specifies the signing certificate in case of:

 Local document hashing.

 Common name to be used for “Signed By” attribute
in signature.

 When routing request to RAS/SAM Gateway as user
key is not available at the relevant gateway to
generate the signature structure.

SetWaterMarkInfo(PdfWaterM

arkInfo)
Specifies the water mark info used to create water mark in
the PDF document before sending the signing request to
ADSS Server.

SetFormFieldValue(String

formFieldName,String

formFieldValue)

Specifies the PDF form field value before sending the
signing request to ADSS Server.

SetPadesSignatureType(Stri

ng PadesSignatureType)
Specifies the PAdES signature type computed. Possible
values are PAdES-BES, PAdES-T and PAdES-LTV

SetVerificationServiceAddr

ess(String

VerificationServiceAddress

)

Specifies the Verification Service URL to verify and enhance
the PAdES signatures to PAdES-LTV. It would be used when
the document hash locally computed.

SetVerificationProfile(Str

ing VerificationProfile)
Specifies Verification Profile ID to process the verification
request accordingly. It would be used when the document
hash locally computed.

SetTimeStampServiceAddress

(String

TimeStampServiceAddress)

Specifies the Time-Stamp Service URL to time-stamp
PAdES-LTV signatures. It would be used when the
document hash locally computed.

SetTimeStampPolicyId(Strin

g TimeStampPolicyId)
Specifies Time-Stamp Policy ID to timestamp the signatures
accordingly. It would be used when the document hash
locally computed.

IsDocumentSigned() returns

bool
Checks if the provided PDF document is already signed or
not.

This method is helpful in deciding whether to send an already
signed document for signing to ADSS Server or skip it.

GetCertifyPermission()

returns int
Returns the certify permission applied on the PDF document.

The return value can be one of:

- CERTIFIED_FORM_FILLING

- CERTIFIED_FORM_FILLING_AND_ANNOTATIONS

- CERTIFIED_NO_CHANGES_ALLOWED

NO_RESTRICTIONS (No Certify Permission applied)

4.5.2 Other PDF Signing Request Methods

In addition to the above, the following methods are available for specifying various aspects of the PDF
signatures. Again these are documented in the JavaDoc and Sandcastle documentation:

SetCompanyLogo, SetContactInfo, SetFontrepository, SetHandSignature,

SetSignedBy, SetSigningArea, SetSigningField, SetSigningLocation,

SetSigningPage, SetSigningReason, SetWatermarkInfo,

SetSignatureAppearanceId, SetLocalHash, SetSignatureDictionarySize

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 36 of 181

4.5.3 Sending the PDF Signing Request

Once the signing request message has been built using the above methods, it can then be sent to
ADSS Server using the following method call:

var pdfSigningResponse = (PdfSigningResponse)pdfSigningRequest.Send(string URL);

The URL is that of the Signing Service e.g. http://machine-name:8777/adss/signing/dss or

http://machine-name:8777/adss/signing/hdsi when using HTTP mode.

4.5.4 Example of building and sending a PDF Signing Request

4.5.5 PDF Signing Response Methods

All PDF Signing Response methods are inherited from the Message, Response and Signing Response
classes described in sections 3 and 4.4.3, and in the JavaDoc/Sandcastle class documentation.

4.6 Empty Signature Field Request and Response Classes
The Empty Signature Field Request Class is used to request creation of an empty signature field in a
PDF document and optionally to sign the document if that is required.

The following constructor is used to build the initial Empty Signature Field Request. There are two
variants depending upon whether the pdfDocument is specified as a file path or byte[].

var sigFieldRequest = new EmptySignatureFieldRequest(string clientID,

pdfDocument);

http://localhost:8777/adss/signing/dss
http://localhost:8777/adss/signing/hdsi

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 37 of 181

4.6.1 Empty Signature Field Request Method

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the Empty Signature Field Request class:

Empty Signature Field
Request Method

Purpose

AddSignaturePosition(<visi

ble signature parameters>)
Supplies a list of parameters to fully specify a signature
position and appearance.

OverrideProfileAttribute

(string attributeID,

string/byte[])

Allows specific signing attributes to be overridden if signing
is required/allowed as part of empty signature field creation.
For example ‘Signing Reason’ could be overridden.

SetProfileId(string) Specifies the Signing Service Profile ID to be used for
servicing the Signature Field Creation.

SetSigningCertificatePassw

ord (string)
Specifies the P12/PFX file password for the PDF signing
operation if this is required.

SetSigningInfo(string

profileId, string

certAlias)

Identifies the Signing Profile and references the
certificate/server key to be used for signing the PDF (if this
is required).

4.6.2 Sending the Empty Signature Field Request

Once the Empty Signature Field request message has been built using the above methods, it can then
be sent to ADSS Server using the following method call:

var sigFieldResponse =

(EmptySignatureFieldResponse)sigFieldRequest.Send(string URL);

The URL is that of the Empty Signature Field Request Service e.g. http://machine-

name:8777/adss/signing/esi

4.6.3 Example of an Empty Signature Field Request

4.6.4 Empty Signature Field Response Methods

The Empty Signature Field Response methods are mainly inherited from the Message and Response
classes and are described in section 3 and in the JavaDoc/Sandcastle class documentation.

In addition, the following methods are specific to the Empty Signature Field Response Class:

http://machine-name:8777/adss/signing/esi
http://machine-name:8777/adss/signing/esi

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 38 of 181

Empty Signature Field
Response Method

Purpose

GetDocument() returns

string
If signing information is also provided as part of the empty
signature field request, then the service first creates the
empty signature field and then signs the same field.

If signing information is not provided, then the service only
returns the PDF document with the empty signature field.

GetProfileId() returns

string
Returns the Signing Profile ID used by the ADSS Signing
Service to process the request.

PublishDocument(string

/Stream)
Publishes the signed document to the specified path or
stream.

4.7 Document Hashing Request and Response classes
The Document Hashing classes are used together with Signature Assembly where ADSS Server is first
requested to create the hash for a PDF document, and then the client signs the hash and finally ADSS
Server assembles the document signature.

The following constructor is used to build the initial Document Hashing Request. There are four variants
depending upon whether the pdfDocument is specified as a file path or byte[] and whether

the userCertificate is passed as an X509Certificate or as a byte[].

var hashRequest = new DocumentHashingRequest(string clientID, pdfDocument,

userCertificate);

4.7.1 Document Hashing Request Methods

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the Document Hashing Request class:

Document Hashing Request
Method

Purpose

OverrideProfileAttribute

(string attributeID,

string/byte[])

Allows specific attributes to be passed to ADSS Server as
part of the hashing request - see example below where
various signing attributes are supplied.

SetProfileId(string) Specifies the Signing Service Profile ID to be used for
servicing the Document Hashing request.

4.7.2 Sending the Document Hashing Request

Once the Document Hashing Request message has been built, it can be sent to ADSS Server using
the following method call:

var hashResponse = (DocumentHashingResponse)hashRequest.Send(string URL);

The URL is that of the Document Hashing Request Service e.g. http://machine-
name:8777/adss/signing/dhi

http://localhost:8777/adss/signing/
http://localhost:8777/adss/signing/

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 39 of 181

4.7.3 Example of a Document Hashing Request

4.7.4 Document Hashing Response Methods

Document Hashing Response methods are mainly inherited from the Message and Response classes
and are described in section 3 and in the JavaDoc/Sandcastle class documentation.

In addition the following methods are specific to the Document Hashing Response class:

Document Hashing Response
Method

Purpose

GetDocumentHash() returns

byte[]
Returns the hash of the PDF document calculated by the
Signing Service. Required for the subsequent signature
assembly request.

GetDocumentId() returns

ArrayList
Returns a document Id. Required for the subsequent
signature assembly request.

GetProfileId() returns

string
Returns the Signing Profile ID used by the ADSS Signing
Service to process the request.

4.8 Signature Assembly Request and Response classes
The Signature Assembly classes are used together with the Document Hashing classes described in
section 0. ADSS Server is first requested to create the hash for a PDF document, then the client signs
the hash and finally ADSS Server assembles the document signature.

The following constructor is used to build the initial Signature Assembly Request.

Signature is the signature generated at the client after ADSS Server had returned the document

hash. documentId is the ID of the hashed document.

var assemblyRequest = new SignatureAssemblyRequest(clientID, signature,

documentId);

4.8.1 Signature Assembly Request Methods

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following method is specific to the Signature Assembly Request class:

Signature Assembly Request
Method

Purpose

SetProfileId(string) Specifies the Signing Service Profile ID to be used for
servicing the request.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 40 of 181

4.8.2 Sending the Signature Assembly Request

Once the Signature Assembly Request message has been built, it can be sent to ADSS Server using
the following method call:

var assemblyResponse =

(SignatureAssemblyResponse)assemblyRequest.Send(string URL);

The URL is that of the Signing Service e.g. http://machine-name:8777/adss/signing/sai

4.8.3 Example of a Signature Assembly Request

4.8.4 Signature Assembly Response Status Processing

The Signature Assembly Response methods are mainly inherited from the Message and Response
classes and are described in section 3 and in the JavaDoc/Sandcastle class documentation.

In addition, the following methods are specific to the Signature Assembly Response Class:

Signature Assembly
Response Method

Purpose

GetDocument() returns

string
Returns the signed PDF document.

GetProfileId() returns

string
Returns the Signing Profile ID used by the ADSS Signing
Service to process the request.

PublishDocument(string

/Stream)
Publishes the signed document to the specified path or
stream.

4.9 Office Signing Request and Response Classes
The Office Signing Request Class is used to sign signature lines in office document.

The following constructor is used to build the initial Office Signing Request message. There are different
variants depending upon the source of the document to be signed i.e. whether the document is

specified as a file path, Stream or byte[].

OfficeSigningRequest obj_officeSigningRequest = new

OfficeSigningRequest(String clientID,byte[] document, String mimeType);

4.9.1 Office Signing Request methods

The following methods are inherited from the Sign Request class and described in section 0:

setCertificateAlias,setCertificatePassword,setProfileId,setSignerCertific

ate, setSignerCertificateChain,setSignatureForm

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc class documentation:

reset, setProxy, setProxy, setRequestId, setRequestRetries,

setRespondAddress, setSigningCredentials, setSigningCredentials,

setSigningMode, setSoapVersion, setSslClientCredentials,

http://machine-name:8777/adss/signing/sai

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 41 of 181

setSslClientCredentials, setSslTrustStore, setTimeout,

setVerifyResponse,toString, writeTo, writeTo.

The following additional methods are specific to the Office Signing Request:

Office Signing Request
Method

Purpose

SetSignHash(boolean

a_bComputeHash)
If this flag is set to false in ADSS Client SDK then ADSS
Signing Service will do the hashing and encryption. If this
flag is set to true then ADSS Client SDK will do hashing and
ADSS Signing Service will do encryption. By default it is set
to false.

SetDigestAlgorithm(String

a_strDigestAlgorithm)
Specifies the hash algorithm to be used in the case of local
document hashing.

SetLocalHash(boolean

a_bLocalHash)
It sets the flag for local hashing. This method is used if client
need to do the local hashing on the Office document instead
of sending the whole document to Signing Service. This
method reduces network band because only the hash
travels and also Office document confidentiality will be
achieved if client does not want to send whole document to
the server.

SetHandSignature(byte[]

a_byteHandSignature)
Specifies a hand signature image file.

SetSetupId(String

a_strSetupId)
Specifies the setup Id. It is used to identify the signature line
in Office document. Possible values are UUID i.e
{C777B235-1C61-4304-A7EC-0581612CD745} or email
address. If same email address is associated with multiple
signature lines then all signature line will be signed in case
of server side signing.

IsDocumentSigned() returns

bool
Checks if the provided MS Office document is already
signed or not.

This method is helpful in deciding whether to send an
already signed document for signing to ADSS Server or skip
it.

4.9.2 Sending the Office Signing Request

Once the office signing request message has been built using the above methods, it can then be sent
to ADSS Server using the following method call:

obj_officeSigningResponse = (OfficeSigningResponse) officeSigningRequest.send(String

URL);

The URL is that of the Signing Service e.g. http://machine-name:8777/adss/signing/dss or

http://machine-name:8777/adss/signing/hdsi when using HTTP mode.

4.9.3 Example of building and sending an Office Signing Request

// Constructing request for word document signing

OfficeSigningRequest obj_officeSigningRequest = new

OfficeSigningRequest(str_ClientId, arr_bdocument, str_mimeType);

obj_officeSigningRequest.setProfileId(str_ProfileId);

obj_officeSigningRequest.setSetupId(str_setupId);

obj_officeSigningRequest.setRequestMode(str_requestMode);

// Sending the above constructed request to the ADSS server

http://localhost:8777/adss/signing/dss
http://localhost:8777/adss/signing/hdsi

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 42 of 181

OfficeSigningResponse obj_officeSigningResponse = (OfficeSigningResponse)

officeSigningRequest.send(str_serviceAddress);

4.9.4 Office Signing Response Methods

All Office Signing Response methods are inherited from the Message, Response classes described in
sections 3 and 4.4.3, and in the JavaDoc class documentation.

4.10 Signing Status Request and Response Classes
The Signing Status Request Class is used to get status of signing request.

The following constructor is used to build the initial Signing Status Request message.

StatusRequest signingStatusRequest = new StatusRequest (String clientID,

String transactionID);

4.10.1 Sending the Signing Status Request

Once the signing status request message has been built using the above methods, it can then be sent
to ADSS Server using the following method call:

obj_signingStatusResponse = (StatusResponse)

signingStatusRequest.send(String URL);

The URL is that of the Signing Service e.g. http://machine-name:8777/adss/signing/hdsi

4.10.2 Example of building and sending an Signing Status Request

// Constructing request for signing status request

StatusRequest signingStatusRequest = new StatusRequest(str_ClientId,

str_transactionID);

// Sending the above constructed request to the ADSS server

StatusResponse obj_signingStatusResponse = (StatusResponse)

signingStatusRequest.send(str_serviceAddress);

4.10.3 Signing Status Response Methods

All Signing Status Response methods are inherited from the Message, Response classes described in
sections 3 and 4.4.3, and in the JavaDoc class documentation.

Also they are described in section 3 and in the JavaDoc/Sandcastle class documentation.

In addition the following methods are specific to the Status Response class:

Document Hashing Response
Method

Purpose

getStatus()

returns string

Possible statuses are:

 SUCCESS

 FAILED

 PENDING

 CANCELLED

getTransactionID ()

returns string
Returns the transaction id that used to get status of the
request.

getComputedSignature ()

returns byte[]
Return the computed signature.

http://machine-name:8777/adss/signing/hdsi

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 43 of 181

4.11 Certificate Download Request and Response Classes
The Certificate Download Request Class is used to get the certificate and its chain of the certificate
alias which will be mentioned in the request.

The following constructor is used to build the initial Certificate Request message.

CertificateRequest obj_certRequest = new CertificateRequest(String

CertificateAlias, String MimeType);

4.11.1 Certificate Request methods

The following methods are inherited from the Sign Request class and described in section 0:

setCertificateAlias,setCertificatePassword,setProfileId,setSignerCertific

ate, setSignerCertificateChain,setSignatureForm

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc class documentation:

reset, setProxy, setProxy, setRequestId, setRequestRetries,

setRespondAddress, setSigningCredentials, setSigningCredentials,

setSigningMode, setSoapVersion, setSslClientCredentials,

setSslClientCredentials, setSslTrustStore, setTimeout,

setVerifyResponse,toString, writeTo, writeTo.

 The following additional methods are specific to the Certificate Request:

Certificate Request Method Purpose

setMimeType()

returns string

Mime type attribute is to identify the type of Certificate that
client wants (user certificate or service certificate) to export.

It is a mandatory parameter in the certificate download
request.

setClientId()

returns string

Client ID to identify that which client is processing the
request.

setAlias()

returns string

Specifies the certificate alias which will be used to export
that particular certificate and its chain.

setProfileId()

return string
Specifies the Signing Service Profile ID to be used for
downloading the specific certificate and its chain.

4.11.2 Sending the Certificate Download Request

Once the certificate download request message has been built using the above methods, it can then be
sent to ADSS Server using the following method call:

CertificateResponse obj_certificationResponse = (CertificateResponse)
obj_certRequest.Send(string str_serviceAddress);

The str_serviceAddress is that of the Signing Service e.g. http://machine-name:8777/adss/signing/hcert

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 44 of 181

4.11.3 Example of building and sending a Certificate Download Request

// Constructing request for certificate download request

CertificateRequest obj_certRequest = new

CertificateRequest(CertificateAlias,MimeType);

// Sending the above constructed request to the ADSS server

CertificateResponse obj_certificationResponse = (CertificateResponse)
obj_certRequest.Send(str_serviceAddress);

4.11.4 Certificate Response Methods

All Certificate Response methods are inherited from the Message, Response classes described in
sections 3 and 4.4.3, and in the JavaDoc class documentation.

 They are also described in section 3 and in the JavaDoc/Sandcastle class documentation.

 In addition, the following methods are specific to the Certificate Response class:

Certificate Response Method Purpose

getCertificate ()

returns byte[]

Return the certificate and its chain.

4.12 Signing Service Sample Code
Java and .Net sample code is provided as part of the ADSS Client SDK and can be used to make
Signing Service requests and to process the Signing Service responses.

The Java API provides the required classes under the package:

com.ascertia.adss.client.api.signing

 The .Net API provides the required classes under the namespace:

Com.Ascertia.ADSS.Client.API.Signing

4.12.1 Java API Sample Code

The following sample programs demonstrate how the Java API can be used to send a Signing Service
request and to process the response:

samples/src/com/ascertia/adss/client/samples/signing/SignPDF.java

samples/src/com/ascertia/adss/client/samples/signing/SignPdfWithTextWater

mark.java

samples/src/com/ascertia/adss/client/samples/signing/SignFile.java

samples/src/com/ascertia/adss/client/samples/signing/SignXML.java

samples/src/com/ascertia/adss/client/samples/signing/SignXmlWithLocalHash

.java

samples/src/com/ascertia/adss/client/samples/signing/SignPdfHTTP.java

samples/src/com/ascertia/adss/client/samples/signing/SignPdfUsingPreferen

ces.java

samples/src/com/ascertia/adss/client/samples/signing/SignPdfWithLocalHash

.java

samples/src/com/ascertia/adss/client/samples/signing/AuthoriseSignPDF.jav

a

samples/src/com/ascertia/adss/client/samples/signing/CreateEmptySigFields

.java

samples/src/com/ascertia/adss/client/samples/signing/HashAndAssemblyManag

er.java

samples/src/com/ascertia/adss/client/samples/signing/SignMsOfficeDocument

.java

samples/src/com/ascertia/adss/client/samples/signing/SignMsOfficeDocument

HTTP.java

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 45 of 181

samples/src/com/ascertia/adss/client/samples/signing/SignMsOfficeDocument

WithLocalHash.java

samples/src/com/ascertia/adss/client/samples/signing/DownloadCertificate.

java

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/SignPDF.bat

samples/bin/SignPdfWithTextWatermark.bat

samples/bin/SignFile.bat

samples/bin/SignXML.bat

samples/bin/SignXmlWithLocalHash.bat

samples/bin/SignPdfHTTP.bat

samples/bin/SignPdfUsingPreferences.bat

samples/bin/SignPdfWithLocalHash.bat

samples/bin/AuthoriseSignPDF.bat

samples/bin/CreateEmptySigFields.bat

samples/bin/SignMsOfficeDocument.bat

samples/bin/SignMsOfficeDocumentHTTP.bat

samples/bin/SignMsOfficeDocumentWithLocalHash.bat

samples/bin/ DownloadCertificate.bat

4.12.2 samples/bin/HashAndAssemblyManager.bat.Net API Sample Code

The following sample programs demonstrate how the .Net API can be used to send a Signing Service
request and to process the response:

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignPDF.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignPdfWithTextWater

mark.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignFile.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignXML.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignXmlWithLocalHash

.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignPdfHTTP.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignPdfUsingPreferen

ces.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignPdfWithLocalHash

.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/AuthoriseSignPDF.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/CreateEmptySigFields

.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/HashAndAssemblyManag

er.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignMsOfficeDocument

.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignMsOfficeDocument

HTTP.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/SignMsOfficeDocument

WithLocalHash.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Signing/

DownloadCertificate.cs

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/SignPDF.bat

samples/bin/SignPdfWithTextWatermark.bat

samples/bin/SignFile.bat

samples/bin/SignXML.bat

samples/bin/SignXmlWithLocalHash.bat

samples/bin/SignPdfHTTP.bat

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 46 of 181

samples/bin/SignPdfUsingPreferences.bat

samples/bin/SignPdfWithLocalHash.bat

samples/bin/AuthoriseSignPDF.bat

samples/bin/CreateEmptySigFields.bat

samples/bin/HashAndAssemblyManager.bat

samples/bin/SignMsOfficeDocument.bat

samples/bin/SignMsOfficeDocumentHTTP.bat

samples/bin/SignMsOfficeDocumentWithLocalHash.bat

samples/bin/DownloadCertificate.bat

4.13 ADSS Signing Service Supported Algorithms
The following is a list of signing/hashing algorithms and key lengths that ADSS Signing Service
supports:

ADSS Service Signing Algorithms Hashing Algorithms Signing Key
Algorithm
Lengths

Signing SHA1WithRSAEncryption

SHA224WithRSAEncryption
SHA256WithRSAEncryption

SHA384WithRSAEncryption

SHA512WithRSAEncryption

SHA3-224WithRSAEncryption

SHA3-256WithRSAEncryption

SHA3-384WithRSAEncryption

SHA3-512WithRSAEncryption

SHA3-224WithRSAandMGF1

SHA3-256WithRSAandMGF1

SHA3-384WithRSAandMGF1

SHA3-512WithRSAandMGF1

RipeMD128WithRSAEncryptio
n

RipeMD160WithRSAEncryptio
n

SHA1withECDSA

SHA224withECDSA

SHA256withECDSA

SHA384withECDSA

SHA512withECDSA

SHA3-224withECDSA

SHA3-256withECDSA

SHA3-384withECDSA

SHA3-512withECDSA

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

SHA3-224

SHA3-256

SHA3-384

SHA3-512

RipeMD128

RipeMD160

GOST-3411-94

RSA:
1024, 2048, 3072,
4096

ECDSA:
192,224,256,384,521

GOST-3410-2001

512

Hashing,
Assembly

- SHA-1

SHA-224

SHA-256

-

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 47 of 181

SHA-384

SHA-512

SHA3-224

SHA3-256

SHA3-384

SHA3-512

RipeMD128

RipeMD160

4.14 Error Codes
ADSS Signing Server returns the following statuses in case of any failure:

Error Code Error Message

41001 ADSS Signing service not enabled in license.

41002 ADSS Signing service license has expired.

41003 ADSS Signing service is stopped.

41004 An internal error occurred while processing the request.

41005 Failed to create signature.

41006 Failed to create Visible signature.

41007 Failed to create invisible signature.

41008 Failed to create PKCS#7 signature.

41009 Failed to embed timestamp token.

41010 Failed to embed revocation information.

41011 Failed to embed archive timestamp token.

41012 PDF signing not enabled.

41013 Time stamped signature creation not enabled in license.

41014 Long term signature creation is not enabled in license.

41015 SigG compliant signature creation not enabled in license.

41016 Failed to embed revocation information.

41017 Failed to create XAdES-X type 2 signatures.

41018 User certificate format is invalid.

41019 No document found in the request.

41020 No Originator ID found in the request.

41021 User certificate chain not present in the request.

41022 No signature found on the request.

41023 Request structure is invalid.

41024 Signature verification failed.

41025 Referenced private key does not belong to the client.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 48 of 181

41026 Referenced certificate chain not found.

41027 Signer certificate has expired.

41028 Signer certificate is a CA certificate.

41029 Request is not signed.

41030 Document Id is not found in the request.

41031 Signing profile is not appropriate for this file type.

41032 Signed PDF cannot subsequently be certify signed.

41033 PDF is already certify signed.

41034 Failed to authenticate signing request.

41035 Authorised signing is not enabled in license.

41036 Failed to validate authoriser’s signature.

41037 Authorisers signature not found in request.

41038 Signer certificate status is revoked or unknown.

41039 Default profile not configured and neither found in request.

41040 Signing certificate alias is not one of the allowed set of certificate aliases.

41041 Default signing certificate alias not found in request or profile.

41042 An internal error occurred while processing the request.

41043 Failed to match data hash with signed hash.

41044 Failed to assemble signature within the document.

41045 Failed to create empty signature field.

41046 Failed to create file signature.

41047 Failed to parse PDF document.

41048 Failed to create signing response.

41049 Failed to compute hash.

41050 Failed to create CAdES-T signature.

41051 Private key referenced is not found.

41052 Document hash was not provided in the request.

41053 Failed to create XAdES-T signature.

41054 Failed to create CMS signature.

41055 Failed to create CAdES-BES signature.

41056 Failed to create S/MIME signature.

41057 XAdES detached signatures are not supported.

41058 Failed to create XADES-BES signature.

41059 Failed to create CAdES-X-L signature.

41060 Failed to create XAdES-X-L signature.

41061 Failed to create CAdES-A signature.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 49 of 181

41062 Failed to create XAdES-A signature.

41063 Certify signed PDF with no changes allowed cannot be signed.

41064 Signing field information is not available.

41065 Problem in creating/signing empty signature field.

41066 SigG signature configurations are not available.

41067 Failed to create SigG signature.

41068 Signer certificate does not contain required extensions.

41069 Processing of requested signature type is not enabled in license.

41070 Signature grace period is not yet elapsed.

41071 Failed to create PAdES-BES signature.

41072 Failed to create XAdES-X type 1 signature.

41073 Input file is either unsigned or contains an archive time stamped signature.

41074
PDF document already contains PAdES-LTV Document Timestamp
signature.

41075 Signing service not allowed.

41076 Signature dictionary size is smaller than required.

41077 No key alias available from request and profile.

41078 Invalid input document format.

41079 Embedded data in signature time stamp is invalid.

41080 Embedded data in time stamp is invalid.

41081 Embedded data in signature is invalid.

41082 Signing time not present in signature.

41083 Signing service not enabled in system.

41084 Signing field not found in the PDF document.

41085 Signing certificate cannot be used for document or notary or email signing.

41086 Signing profile is inactive.

41087 Signing profile does not exist or marked inactive.

41088 Input document is encrypted.

41089 Signed document cannot be encrypted.

41090 Authorised signature not supported on http interface.

41091 Invalid password.

41092 Password not provided in the request.

41093 Key cannot be used for document signing.

41094 Only PDF documents can be time stamped.

41095 Revocation information unavailable for existing document time stamp.

41096 Unable to create document time stamp.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 50 of 181

41097 User authentication failed against the directory.

41098 PDF document cannot be time stamped, document has user signature.

41155 Certificate or certificate chain is not available.

41158 Unable to get RAS profile information

41161 Invalid credential authorisation settings or request parameters are missing

41162 eSeal is not enabled in SAM profile

41163 Unable to authenticate client over RAS OAuth2/Token interface

41164 Explicit with OTP credential authorisation method is not supported

41165 Request ID is not found in signing request required for OAuth2 credential
authorisation

41166 Failed to sign hash

41167 Response URI is not configured in signing profile

41168 Eseal is not enabled in signing profile

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 51 of 181

5 ADSS Verification Service
The ADSS Server Verification Service provides the following types of verification services:

 OASIS DSS Compliant signature verification (PDF, XML and PKCS7 signatures)

 OASIS DSS Compliant verification of advanced signature formats (XAdES, CAdES and
PAdES)

 OASIS DSS certificate validation

Business Client Applications send requests to ADSS Server and receive responses back. The majority
of the verification parameters are already set up in profiles at the server but some may be overridden if
the profile permits this (e.g. certificate or key quality). The Business Application just needs to provide a
list of the items it requires back in the response.

All the Trust Services shown above are provided either by ADSS Server or they can be external.

The protocol used for the OASIS compliant services is based on the OASIS Digital Signature Service
(DSS) Core Protocols, Elements and Bindings specification (oasis-dss-core-spec-v1.0-os). Messages
are wrapped in a SOAP message and sent using HTTP.

In addition to this core protocol, the Verification Service also supports the OASIS DSS-X Verification
Report protocol (oasis-dsss-1.0-profiles-vr-cd01).

5.1 Digital Signature Standards
Digital signatures verified by ADSS Server are open standards compliant and can include timestamps
and revocation information. The following signature types are supported:

Supported Signature Types (ascertia.com)

5.2 Setting up Verification Service Profiles
The ADSS Verification Service requires that Verification Profiles are defined at ADSS Server. These
profiles identify the type of signature that can be verified using that profile (e.g. PDF certifying signature
with embedded timestamp and revocation information) and any other settings that may be required (e.g.
specific key usages or extended key usages, certificate quality levels, certificate path settings etc.).

Refer to the following online admin guide for an explanation of Verification Profile settings:

Step 4 - Configuring Verification Profile (ascertia.com)

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/supported_signature_types.html
https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/step4_configuring_verification_p.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 52 of 181

5.3 The Verification Service API
In order to simplify the use of the OASIS DSS and Ascertia proprietary HTTP protocols, a Verification
Service API is provided as part of the ADSS Client SDK.

5.3.1 Verification Request

The API consists of the following classes for building signature verification requests:

 Signature Verification Request class – the main signature verification request class

 Signature Info class – a class to hold a signature to be verified by the service.

The API consists of these classes for building certificate validation requests:

 Certificate Validation Request class – the main certificate validation request class

 Certificate Info class – a class to hold a certificate to be validated by the service.

Both the Signature Verification and Certification Validation Request classes make use of a common
base class which provides some of the required methods:

 Verification Request class – see section 5.4.

5.3.2 Verification Response

The API has these classes to process the verification response:

 Verification Response class – provides access to the verification response object

 Verify Info class – provides response details for each signature verified

 Various Verification Report classes.

5.4 Verification Request Classes

5.4.1 Verification Request Methods

The Signature Verification Request and Certificate Validation Request classes both inherit a number of
methods provided by the Verification Request class. These common methods are described below.

In addition, the following methods are inherited from the generic Request and Message classes and are
described in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send (overridden), SetProxy, SetRequestID,

SetRequestRetries, SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

5.4.2 Specifying Required Key Usages

Verification Request method Purpose

AddKeyUsage(string

keyUsage)

Adds key usage(s) into the request. The Verification Service
checks that these are present in the signing certificate.

The method can be called multiple times to add multiple key
usages into the request.

The following key usages constants are defined:

- KEY_USAGE_DIGITAL_SIGNATURE

- KEY_USAGE_NON_REPUDIATION

- KEY_USAGE_KEY_ENCIPHERMENT

- KEY_USAGE_DATA_ENCIPHERMENT

- KEY_USAGE_KEY_AGREEMENT

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 53 of 181

- KEY_USAGE_KEY_CERT_SIGN

- KEY_USAGE_CRL_SIGN

- KEY_USAGE_ENCIPHER_ONLY

- KEY_USAGE_DECIPHER_ONLY

5.4.3 Adding ‘Respond With’ Items

Verification Request method Purpose

AddRespondWithItem(string

respondWith)
Adds ‘respond with’ item(s) into the request. The respond
with items will then be returned in the response.

The method can be called multiple times to add multiple
‘respond with’ items.

The following are the defined ‘respond with’ constants:

- RESPOND_WITH_KEY_VALUE

- RESPOND_WITH_HASH_ALGORITHM

- RESPOND_WITH_X509_CERTIFICATE_CHAIN

- RESPOND_WITH_X509_CRL

- RESPOND_WITH_SKI

- RESPOND_WITH_OCSP

- RESPOND_WITH_TIMESTAMP

- RESPOND_WITH_SIGN_HASH

- RESPOND_WITH_CONTENT_HASH

- RESPOND_WITH_CONTENT

- RESPOND_WITH_KEY_USAGE

- RESPOND_WITH_EXTENDED_KEY_USAGE

- RESPOND_WITH_BASIC_CONSTRAINTS

- RESPOND_WITH_VALID_FROM

- RESPOND_WITH_VALID_TO

- RESPOND_WITH_CERTIFICATE_SERIAL_NUMBER

- RESPOND_WITH_ISSUER_NAME

- RESPOND_WITH_SUBJECT

- RESPOND_WITH_CRL_URL

- RESPOND_WITH_CRL_NUMBER

- RESPOND_WITH_TSA_TIME (supported in HTTP

interface only)

- RESPOND_WITH_TSA_NAME (supported in HTTP

interface only)

- RESPOND_WITH_TSA_HASH_ALGORITHM (supported

in HTTP interface only)

- RESPOND_WITH_SIGNATURE_TYPE (supported in

HTTP interface only)

- RESPOND_WITH_LEI_INFO (supported in HTTP

interface only)

5.4.4 Overriding Minimum PEPPOL Quality Trust Settings

The ADSS Verification Service supports the PEPPOL standard certificate and algorithm quality trust
levels.

Verification Request method Purpose

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 54 of 181

SetCertificateQualityLevel

(string certQualityLevel)
Sets the minimum acceptable PEPPOL certificate quality
level.

SetHashAlgoQualityLevel

(string

hashAlgoQualityLevel)

Sets the minimum acceptable PEPPOL hash algorithm
quality level.

SetIndependentAssuranceLev

el (string

independentAssuranceLevel)

Sets the minimum acceptable PEPPOL independent
assurance level.

SetPublicKeyAlgoQualityLev

el (string

publicKeyAlgoQualityLevel)

Sets the minimum acceptable PEPPOL public key algorithm
quality level.

5.4.5 OASIS DSS-X Verification Reports

The ADSS Verification Service supports the generation of OASIS DSS-X reports. These are requested
using the following method:

Verification Request method Purpose

SetReturnVerificationRepor

t (bool includeVerifier,

bool

includeCertificateValues,

bool

includeRevocationValues,

bool expandBinaryValues,

string reportDetailLevel)

Specifies the OASIS DSS-X verification report level required
in the response. The meaning of these values is:

includeVerifier: If true then the identity of the verifier will be
included in the report. This option defaults to true.

includeCertificateValues: If true then the certificate values,
used to verify the signature (in binary form or as equivalent
XML structure) are included in the report. This option
defaults to false.

includeRevocationValues: If true then the revocation values
used (e.g. OCSP responses, CRLs and timestamps) will be
included (in binary form or as equivalent XML structure) in
the report. This option defaults to false.

expandBinaryValues: If true then the Verification Service (as
it fulfils the OASIS conformance level “Convenient”) will
include the expanded content of certificates and revocation
information into the verification report. The binary ASN.1-
coded binary values will thereby be included as equivalent
XML structures. This option defaults to false.

reportDetailLevel: This specifies the OASIS Verification
Report detail level and can be one of the following values:

- REPORT_LEVEL_ALL_DETAILS

- REPORT_LEVEL_NO_DETAILS

- REPORET_LEVEL_NO_PATH_DETAILS

5.4.6 Other Verification Request Methods

The remaining methods specific to the Verification Service class are as follows:

Verification Request method Purpose

SetGatewayCompliance(bool

gatewayCompliance)
If set to true this causes the verification request to consist of
document hashes and signatures rather than the complete
documents. This ensures document confidentiality for a
business client.

SetRequestMode (Int32) Specifies the request mode (one of):

- VerificationRequest.HTTP (default mode)

- VerificationRequest.DSS

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 55 of 181

In high performance HTTP mode, the document is placed in
the HTTP body while other information is placed in the HTTP
header.

In OASIS DSS mode, a message is created by following the
OASIS DSS specification. It is then wrapped in a SOAP
message and sent using the HTTP protocol.

Note: The mode parameter is important as affects how the
response status is handled.

Note: Detached signature verification and respond with
items are not supported over the HTTP interface.

SetProfileId (string) Specifies the Verification Profile identifier.

SetHistoricalValidation

(DateTime

historicalValidation, int

timeZone)

Specifies a date and time that should be used as the basis
for performing historical signature verification. (The time
zone value is optional).

SetPeppolCompliance(bool

peppolCompliance)
If set to true then the verification request will be constructed
in compliance with the PEPPOL standard.

SetValidationAtCurrentTime

(bool currentTime)
If set to true then current time should be used for performing
signature validation.

5.5 Signature Verification Requests

5.5.1 Signature Verification Request Constructor

The Signature Verification Request Class is used when requesting ADSS Server to verify signatures.
It can be used with any document and signature type e.g. (PKCS7/CMS, XML or PDF).

The following constructor is used to build the initial Signature Verification Request message and
specifies the clientID of the calling business application plus a transaction id reference.

var sigverifyRequest = new SignatureVerificationRequest(clientID, transID);

5.5.2 Signature Verification Request Methods

The following methods are inherited from the Verification Request class and described in section 5.4:

AddKeyUsage, AddRespondWithItem, Send, SetCertificateQualityLevel,

SetGatewayCompiance, SetHashAlgoQualityLevel, SetHistoricalValidation,

SetIndependentAssuranceLevel, SetPeppolCompliance, SetProfileID,

SetPublicKeyAlgoQualityLevel, SetRequestMode,

SetReturnverificationReport.

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

The following is a list of the remaining methods that are specific to the Signature Verification Request
Class:

Signature Verification Request
Method

Purpose

AddSignatureInfo(signatureInf

o)
Adds a signature into the request. This method may be
called multiple times if more than one signature is to be
verified.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 56 of 181

SetContent(byte[] content) If the signature is a detached PKCS#7/CMS signature
then the signed content must be provided using this
method.

SetReturnSignerIdentity() Asks the Verification Service to return the signer’s
identity.

SetReturnSigningTimeInfo() Asks the Verification Service to return the signature
creation time. If there are multiple signatures then it
returns the signing time of the first signature validated.

SetReturnTimeStampSignature() Asks the Verification Service to upgrade the signature to
a time stamped signature.

SetReturnUpdatedSignature(str

ing returnUpdatedSignature)
Asks the verification Service to return the updated
signature type (e.g. CAdES-T).

SetReturnVerificationTimeInfo

()
Asks the Verification Service to return the time at which
the signature(s) were validated

sendOfficeSignaturesOnly() If this method is called, only the signatures in a Microsoft
Office document would be sent to ADSS Verification
Service instead of full document.

5.5.3 Signature Info Class Constructor

The Signature Info class is used to indicate a specific signature to be verified and once prepared it is
added into the Signature Verification request.

The following constructor is used to build the Signature Info class instance and specifies a
signatureID, the signatureToValidate (provided as a document file path or as a byte[]) and

the signedDocumentType.

var signatureInfo = new SignatureInfo(signatureID, signatureToValidate,

signedDocumentType);

The signedDocumentType is one of the following:

SignatureInfo.SIGNED_DOCUMENT_TYPE_CMS

SignatureInfo.SIGNED_DOCUMENT_TYPE_MIME

SignatureInfo.SIGNED_DOCUMENT_TYPE_OTHER

SignatureInfo.SIGNED_DOCUMENT_TYPE_PDF

SignatureInfo.SIGNED_DOCUMENT_TYPE_PKCS7

SignatureInfo.SIGNED_DOCUMENT_TYPE_XML

5.5.4 Signature Info Methods

The following is a list of the main methods of the Signature Info class:

Signature Info Method Purpose

AddRespondWithItem(string

respondWith)

Adds ‘respond with’ item(s) for the signature request. The
respond with items will then be returned in the response.

The method can be called multiple times to add multiple
‘respond with’ items into the request.

The values are as for the Verification Request class.

SetCertificate(byte[]) Specifies the signing certificate used when creating the
signature.

SetContentHash(byte[]

contentHash, string

contentHashAlgorithm)

Specifies the hash algorithm and content hash. If this
method is called then it means the content hash will be
sent in the request instead of the full content.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 57 of 181

SetHistoricalValidation

(DateTime)

It specifies the date and time at which the signature
needs to be validated.

SetSignatureFormat(string

signatureFormat)

Specifies the signature format, which can be one of:

- SIGNATURE_FORMAT_A

- SIGNATURE_FORMAT_B

- SIGNATURE_FORMAT_C

- SIGNATURE_FORMAT_OTHER.

(Note, currently format A, C and OTHER are supported.

In format A, where one of more signers produces an
individual signature on the document. The signatures
are detached in this case. Each of these signatures
contains a single signer info type).

In format C, where one signature wraps another
signature. Each signature has only one signer info type

In format OTHER, where ADSS Verification Service
intelligently detects the signature format.

5.6 Certificate Validation Requests

5.6.1 Certificate Validation Request Constructor

The Certificate Validation Request Class is used to ask the Verification Service to validate one or more
certificates.

The following constructor is used to build the initial Certificate Validation Request message and
specifies the clientID of the calling business application plus a transaction id reference.

var certValidateRequest = new CertificateValidationRequest(clientID,

transID);

5.6.2 Certificate Validation Request Methods

The following methods are inherited from the Verification Request class and described in section 5.4:

AddKeyUsage, AddRespondWithItem, Send, SetCertificateQualityLevel,

SetGatewayCompiance, SetHashAlgoQualityLevel, SetHistoricalValidation,

SetIndependentAssuranceLevel, SetPeppolCompliance, SetProfileID,

SetPublicKeyAlgoQualityLevel, SetRequestMode,

SetReturnverificationReport.

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

The following is a list of the methods that are specific to the Certificate Validation Request Class:

Certificate Validation Request
Method

Purpose

AddCertificateInfo

(certficateInfo)
Adds a certificate into the request. (Currently only one
certificate is supported by a single request).

SetReturnVerificationTimeInfo(

)
Asks the Verification Service to return the time at which
the certificate was validated.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 58 of 181

5.6.3 Certificate Info Class Constructor

The Certificate Info class is used to specify a certificate to be verified and, once populated, is added
into Certificate Validation request.

The following constructor is used to build the Certificate Info class instance and specifies a
certificateID, a certificateType and the certificateToValidate (provided as a

document file path or as a byte[]).

var certificateInfo = new CertificateInfo(certificateID, certificateType,

certificateToValidate);

Currently the only valid value for certificateType is
CertificateInfo.CERTIFICATE_TYPE_X509.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 59 of 181

5.6.4 Certificate Info Methods

The following is the main method of the Certificate Info class:

Certificate Validation Request
Method

Purpose

SetHistoricalValidation

(DateTime)
Specifies the date and time at which the certificate needs
to be validated.

5.7 Sending the Verification Request
Once the signature verification or certificate validation request message has been built using the above
methods, it can then be sent to ADSS Server using the following call:

var verifyResponse = (VerificationResponse)verifyRequest.Send(string URL);

The URL is that of the Verification Service e.g. http://machine-

name:8777/adss/verification/dss when using DSS mode or http://machine-

name:8777/adss/verification/hsvi when using HTTP mode.

5.7.1 Example of creating and sending a Signature Verification Request

In the following example, a signature verification request is created. Specific quality levels are set for
the signing certificate and various ‘respond with’ items are requested from the signing certificate. In
addition, a fully detailed verification report and validation of the signature at an historic time is requested.

5.7.2 Example of creating and sending a Certificate Validation Request

In the following example, a certificate validation request is created. Specific quality levels are set for
the certificate and various ‘respond with’ items are requested from the signing certificate. In addition, a
fully detailed verification report and validation of the certificate at an historic time is required.

http://machine-name:8777/adss/verification/dss
http://machine-name:8777/adss/verification/dss
http://machine-name:8777/adss/verification/hsvi
http://machine-name:8777/adss/verification/hsvi

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 60 of 181

5.8 Verification Response Methods

5.8.1 Verification Response Methods

The following methods are inherited from the generic Response and Message classes and are
described in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetRequestID, GetSigningCertificates, GetStatus,

IsSuccessful.

In addition, the following methods are specific to the Verification Response Class:

Verification Response Method Purpose

GetCertificateQualityLevel

() returns string
Returns the certificate quality level used during the
verification process.

GetHashAlgoQualityLevel()

returns string
Returns the hash algorithm quality level used during the
verification process.

GetIndependentAssuranceLev

el () returns string
Returns the independent assurance level used during the
verification process.

GetOriginatorId() returns

string
Returns the Originator ID sent in the request.

GetOverallAssertionStatus(

) returns string
Returns the overall assertion status, one of the following:
trusted, not trusted or indeterminate.

GetProfileId() returns

string
Returns the Verification Profile ID used to process the
request.

GetPublicKeyAlgoQualityLev

el () returns string
Returns the public key quality level used during the
verification process.

GetReason() returns string Returns a comma separated list of all Signature Ids which
were not valid. For a PDF signature the Signature ID is the
signature field name.

GetResponderName() returns

string
Returns the subject name of the verification response
signing certificate.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 61 of 181

GetResponseId() returns

string
Returns the transaction Id received in the request. This is
used to correlate the request and response.

GetResponseType() returns

string
Returns the type of response, either signature or certificate
validation.

GetResultMajor() returns

string
(Used in OASIS DSS protocol mode).

The Result Major status message provides the main result
from processing the verification request. The status can be
one of the following:

- Success

- Requester Error

- Responder Error

- Insufficient Information

GetResultMinor() returns

string
(Used in OASIS DSS protocol mode).

The possibilities for the Result Minor status messages
depend upon the Result Major message.

For Result Major = Success, Result Minor values are:

valid:signature:OnAllDocuments

valid:signature:NotAllDocumentsReferenced

invalid:IncorrectSignature

valid:signature:HasManifestResults

valid:signature:InvalidSignatureTimestamp

For Result Major = Requester Error, Result Minor values are:

ReferencedDocumentNotPresent

MoreThanOneRefUriOmitted

InvalidRefUri

NotParseableXMLDocument

NotSupported

InappropriateSignature

(Other values are possible)

For Result Major = ResponderError, Result Minor values
are:

GeneralError

KeyLookupFailed

(Other values are possible)

For Result Major = Insufficient Information, Result Minor
values are:

CrlNotAvailable

OcspNotAvailable

CertificateChainNotComplete

GetSignerIdentity()

returns string
Returns the first signer identity name.

GetSigningTimeInfo()

returns DateTime
Returns the signing time of the first signature.

GetTimeInstant() returns

DateTime
Returns the date and time when the response message was
formed.

GetTimeStampedSignatue()

returns byte[]
Returns a first TimeStampedSignature.

GetUpdatedSignature()

returns byte[]
Returns the first updated signature.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 62 of 181

PublishUpdatedSignature(St

ream)
Publishes the updated signatures to the specified stream.

GetUpdatedSignatureType()

returns string
Returns the updated signature type.

GetVerificationReport()

returns VerificationReport
Returns the OASIS DSS-X signature verification report if this
was set in the request.

GetVerificationTimeInfo() Returns the date and time for which the signature is
validated.

GetVerifyInfo() returns

ArrayList
Returns a list of VerifyInfo elements, each item
corresponding to one of the SignatureInfos in the request.

GetVersion() returns

string
Returns the version of the Verification Service interface.

5.8.2 Verify Info Class

As explained above GetVerifyInfo() returns a list of VerifyInfo elements, each one

corresponding to one of the SignatureInfos in the request. The following are the methods available

to access this information:

Verify Info Method Purpose

GetCertificate() returns

string
Returns the signer certificate as base64 encoded string.

GetCertificateQualityLevel

() returns string
Returns the certificate quality level used during the
verification process.

GetFailureReason() returns

string
Returns ‘null’ if the signature verified correctly otherwise it
contains the failure reason.

GetHashAlgoQualityLevel()

returns string
Returns the hash algorithm quality level used during the
verification process.

GetHistoricalValidation()

returns DateTime
Returns the historical validation date and time that was sent
in the request.

GetIndependentAssuranceLev

el () returns string
Returns the independent assurance level used during the
verification process.

GetNextUpdate() returns

string
Returns the content of the ‘nextUpdate’ field of the CRL from
which the signer certificate revocation status is checked

GetPublicKeyAlgoQualityLev

el () returns string
Returns the public key quality level used during the
verification process.

GetResponseItems() returns

ArrayList
Returns the list of response items as specified in the
‘respond with’ calls.

GetSignatureId() returns

string
Returns the Signature ID. For a PDF signature the Signature
ID is the signature field name.

GetSignatureStatus()

returns string
Returns status information for a particular signature, either
valid or invalid.

GetSignerDN() returns

string
Returns the subject name of the signer certificate.

GetThisUpdate() returns

string
Returns the content of the ‘thisUpdate’ field of the CRL from
which the signer certificate revocation status is checked

GetSigningTimeInfo()

returns DateTime
(Used in HTTP mode).

It returns the signing time of the signature.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 63 of 181

GetVerificationTimeInfo()

returns DataTime
(Used in HTTP mode).

It returns the date time on which signature is validated.

GetContentType() returns

string
(Used in HTTP mode).

It returns the Content-Type.

GetIssuerName() returns

string
(Used in HTTP mode).

It returns the IssuerName of the signer certificate.

GetCrlNumber() returns

string
(Used in HTTP mode).

It returns the CRL number.

GetCertificateSerialNumber

() returns string
(Used in HTTP mode).

It returns the Serial Number of the signer certificate.

GetValidFrom() returns

string
(Used in HTTP mode).

It returns the validFrom of the signer certificate.

GetValidTo() returns

string
(Used in HTTP mode).

It returns the validTo of the signer certificate.

IsQcCompliance() returns

Boolean
(Used in HTTP mode).

It returns whether or not the signer certificate has Qualified
Certificate Statements extension.

IsQcSSCD() returns Boolean (Used in HTTP mode).

It returns whether or not the signer certificate has Secure
Signature Creation Device QC statement.

GetQcCaRetentionPeriod()

returns int
(Used in HTTP mode).

It returns the CA retention period QC statement.

GetQcCurrency()returns

String
(Used in HTTP mode).

It returns the Currency Code in Transaction Limit QC
statement.

GetQcAmount() returns

String
(Used in HTTP mode).

It returns the Amount in Transaction Limit QC statement.

GetQcExponent() returns

String
(Used in HTTP mode).

It returns the Exponent in Transaction Limit QC statement.

GetEpesSignaturePolicyId()

returns String
(Used in HTTP mode).

It returns EPES Signature Policy OID.

GetEpesSignaturePolicyUri(

) returns String
(Used in HTTP mode).

It returns EPES Signature Policy URI.

GetEpesSignaturePolicyUser

Notice() returns String
(Used in HTTP mode).

It returns EPES Signature Policy User Notice.

GetLeiNumber() returns

String
(Used in HTTP mode).

It returns LEI number.

GetLeiRole() returns

String
(Used in HTTP mode).

It returns LEI role.

GetEtsiValidationReport()

returns

ValidationReportType

(Used in HTTP mode).

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 64 of 181

It return the ETSI Validation Report when Trust Anchor from
TSL is configured in Verification Profile. The report is
compliant to ETSI TS 119 102-2 v1.3.1 Schema

GetSignatureValidationIndi

cation() returns String
(Used in HTTP mode).

It return the main indication of signature validation via TSL

GetSignatureValidationSubI

ndication() returns String

(Used in HTTP mode).

It return the sub indication of signature validation via TSL

IsQcCCLegislated() returns

Boolean
(Used in HTTP mode).

It returns whether or not the signer certificate has Qualified
Certificate Statements extension for showing the Legislated
Countries.

GetLegislatedCountries()

returns String
(Used in HTTP mode).

It returns the Legilated Countries include in the QC
statement.

5.9 Verification Service Reports
The following classes are provided for accessing information returned in OASIS-DSSX Verification
Reports:

 Verification Report Class

 Individual Report Class

 Result Class

 Certificate Validity Class

 Certificate Path Validity Class

 CertID Class

5.9.1 Verification Report Class

The Verification Report class is the main container for holding the set of individual Verification Reports.

As stated previously, if Verification Service Reports have been requested these can be retrieved using
the GetVerificationReport() method. The individual reports can then be accessed with the

following methods:

Verification Report Method Purpose

GetIndividualReports()

returns ArrayList
Returns the set of Verification Reports.

GetVerificationTime()

returns DateTime
Returns the signature validation time.

GetVerifierIdentity()

returns X509Certificate[]
Returns the chain of certificates that identify the verifier.
This can be useful for timestamped reports.

5.9.2 Individual Report Class

The Individual Report class contains an individual Verification Report and has the following methods:

Individual Report Method Purpose

GetIndividualReportType()

returns string

Returns the individual report type i.e. CERTIFICATE or
SIGNATURE.

GetCertValidity() returns List Returns a list of certificate validity information for each
certificate in the path.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 65 of 181

GetCertificatePathValidity()

returns

CertificatePathValidity

Returns the certificate validation path – see the
Certificate Path Validity class below.

GetResult() returns Result Returns the overall Signature Verification result – see
the Result class below.

GetSigMathOK() returns Result Returns the result of the signature check itself.

GetSignatureAlgorithm()

returns string
Returns the signature algorithm as an OID in the case
of Detailed Signature Report .

GetSignatureAlgorithmSuitabili

ty() returns Result
Returns the signature algorithm suitability result.

GetSignatureObjectId() returns

string
Returns the Signature Identity of the signed data or
validation data.

GetSignerCertChainReferences

() returns List<CertID>
Returns a list of the signer certificate chain references
– see the CertID class below for methods to access
these objects.

IsFormatOK() returns Result Returns the result of format checking of a signature –
see the Result class below.

In addition to the above methods, the following are also available and documented in the
JavaDoc/Sandcastle class documentation:

GetSignatureProductionPlaceCity, GetSignatureProductionPlaceCountryName,

GetSignatureProductionPlacePostalCode,

GetSignatureProductionPlaceStateOrProvince, GetSignerLocation,

GetSignerRole, IsSignatureHasVisibleContent.

The first four are specific to XAdES/CAdES signatures and the last three to PDF signatures.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 66 of 181

5.9.3 CertID Class

The CertID class provides information about the certificates in the certificate chain.

CertID Method Purpose

GetDigestMethod() returns

string
Returns the hash/digest method OID.

GetDigestValue() returns

string
Returns the digest value as base64 encoded string.

GetIssuerName() returns

string
Returns the issuer name.

GetSerialNumber() returns

string
Returns the issuer serial number.

5.9.4 Certificate Validity Class

The Certificate Validity class contains validity information for an individual certificate in the path. The
class provides many methods but these can be divided into two types, those that provide validity status
information about the certificate and those that provide information related to the certificate (e.g.
certificate related fields or OCSP/CRL information).

5.9.5 Certificate Validity: Status Information Methods

The following certificate status methods all return a Result class object (see result class for details):

Certificate Validity Method Purpose

IsCertStatusOK() returns Result Returns the result of the certificate revocation status
check.

AreExtensionsOK() returns Result Returns the status of the certificate extensions
check.

GetCrlSignature() returns Result Returns the status of the CRL signature check.

GetCrlSignatureAlgorithmSuitabili

ty() returns Result
Returns the status of the CRL Signature Algorithm
Suitability check.

GetOcspSignatureAlgorithmSuitabil

ity() returns Result
Returns the status of the OCSP Signature Algorithm
Suitability check.

GetOcspSingleResponseStatus()

returns Result
Returns the result of checking OCSP responder
revocation

GetRevocationReason() returns

Result
Returns the Revocation Reason.

If the certificate is Revoked and the revocation
reason is present in the verification Report then this
information will also be included in the Result Minor
element using a URI to indicate the revocation
reason (e.g. keyCompomise).

GetSignatureAlgorithmSuitability(

) returns Result
Returns the status of the Signature Algorithm
Suitability check.

IsChainingOK() returns Result Returns the result of the certificate chaining check.

IsCrlSigMathOK() returns Result Returns the result of the CRL signature verification.

IsOcspSigMathOK() returns Result Returns the result of the OCSP response signature
verification.

IsSigMathOK() returns Result Returns the result of the signature verification.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 67 of 181

IsValidityPeriodOK() returns

Result
Returns the certificate expiry result.

5.9.6 Certificate Validity: Certificate, CRL and OCSP Information

Various other methods are provided by the Certificate Validity class to retrieve information about the
certificate. These are some of the most useful:

Certificate Status Method Purpose

GetCertValue() returns string Returns the certificate as base64 encoded string.

GetCrlCertificatePathValidity

() returns

CertificatePathValidity

Returns the result of CRL issuer certificate path validity
test – see also the Certificate Path Validity class below.

GetCrlValue() returns string Returns the CRL as base64 encoded string.

GetOcspCertificatePathValidit

y() returns

CertificatePathValidity

Returns the result of OCSP responder chain validation –
see also the Certificate Path Validity class below.

GetOcspValue() returns string Returns the OCSP Response as base64 encoded string.

The remaining methods below provide various fields from the certificate or information regarding OCSP
results, the CRL or CRL issuer. These are described in the JavaDoc/Sandcastle class documentation:

GetCertExtension, GetCertIssuerName, GetCertIssuerSerialNo,

GetCertSubject, GetCertValidityPeriodNotAfter,

GetCertValidityPeriodNotBefore, GetCertVersion, GetCrlExtensions,

GetCrlIssuer, GetCrlIssueTime, GetCrlNextUpdate, GetCrlNumber,

GetCrlSignatureAlgorithm, GetCrlThisUpdate, GetCrlURI, GetCrlVersion,

GetOcspProducedAt, GetOcspResponderId, GetOcspResponseExtensions,

GetOcspSignatureAlgorithm, GetOcspSingleResponseHashAlgorithm,

GetOcspSingleResponseIssuerKeyHash, GetOcspSingleResponseIssuerNameHash,

GetOcspSingleResponseNextUpdate, GetOcspSingleResponseSerialNumber,

GetOcspSingleResponseThisUpdate, GetOcspURI, GetOcspVersion,

GetRevocationDate, GetSignatureAlgorithm,

GetSingleOcspResponseExtensions, GetSubject,

5.9.7 Certificate Path Validity Class

The Certificate Path Validity class provides information about each certificate in the validation path:

Certificate Path Validity Method Purpose

GetPathValiditySummary()

returns Result
Returns a summary of the Certificate Path Validation.

GetCertValidity() returns

ArrayList
Returns a list of certificate validity information for each
certificate in the path.

GetSignerCertIssureName()

returns string
Returns the signer certificate issuer name.

GetSignerCertSerialNo()

returns string
Returns signer certificate serial number.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 68 of 181

5.9.8 Result Class

The Result class provides access to the DSS-X Result Major, Result Minor and Result Message results.
These are returned to provide the overall status of various parts of the Verification Report. The actual
values vary by context, see below:

Result Method Purpose

GetResultMajor() returns

string
Returns the Result Major status from the Verification Report
which must be present in the Report.

Result Major can take different values depending upon
context.

For the overall status of the report the following values are
possible:

urn:oasis:names:tc:dss:1.0:detail:valid

urn:oasis:names:tc:dss:1.0:detail:invalid

urn:oasis:names:tc:dss:1.0:detail:indetermined

For the status of a certificate the following values are
possible:

urn:oasis:names:tc:dss-

x:1.0:profiles:verificationreport:certstatus:goo

d

urn:oasis:names:tc:dss-

x:1.0:profiles:verificationreport:certstatus:rev

oked

urn:oasis:names:tc:dss-

x:1.0:profiles:verificationreport:certstatus:unk

nown

GetResultMinor() returns

string
Returns the Result Minor status from the Verification Report.
Where Result Major has the status ‘invalid’ ‘indetermined’,
‘revoked’ or ‘unknown’, then Result Minor will be present to
provide further details.

GetResultMessage() returns

string
Returns the Result Message from the Verification Report.
This is an optional field so may return null but could also
provide other information as is the case with a revoked
certificate (when it holds the revocation time).

5.10 Verification Service Sample Code
Java and .Net sample code is provided as part of the ADSS Client SDK and can be used to make
Verification Service requests and to process the Verification Service responses.

The Java API provides the required classes under the packages:

com.ascertia.adss.client.api.verification

com.ascertia.adss.client.api.verification.report

The .Net API provides the required classes under the namespaces:

Com.Ascertia.ADSS.Client.API.Verification

Com.Ascertia.ADSS.Client.API.Verification.Report

5.10.1 Java API Sample Code

The following sample programs demonstrate how the Java API can be used to send a Verification
Service request and to process the response:

samples/src/com/ascertia/adss/client/samples/verification/VerifyPDF.java

samples/src/com/ascertia/adss/client/samples/verification/VerifyPdfReport

.java

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 69 of 181

samples/src/com/ascertia/adss/client/samples/verification/VerifyPKCS7.jav

a

samples/src/com/ascertia/adss/client/samples/verification/VerifyXmlEnvelo

ped.java

samples/src/com/ascertia/adss/client/samples/verification/VerifyCertifica

te.java

samples/src/com/ascertia/adss/client/samples/verification/historical/Veri

fyPDF.java

samples/src/com/ascertia/adss/client/samples/verification/historical/Veri

fyPKCS7.java

samples/src/com/ascertia/adss/client/samples/verification/historical/Veri

fyXmlEnveloped.java

samples/src/com/ascertia/adss/client/samples/verification/historical/Veri

fyCertificate.java

samples/src/com/ascertia/adss/client/samples/verification/VerifyMsOfficeD

ocument.java

samples/src/com/ascertia/adss/client/samples/verification/VerifyMsOfficeS

ignatures.java

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/VerifyPDF.bat

samples/bin/VerifyPdfReport.bat

samples/bin/VerifyPKCS7.bat

samples/bin/VerifyXmlEnveloped.bat

samples/bin/VerifyCertificate.bat

samples/bin/VerifyPDF_historical.bat

samples/bin/VerifyPKCS7_historical.bat

samples/bin/VerifyXmlEnveloped_historical.bat

samples/bin/VerifyCertificate_historical.bat

samples/bin/VerifyMsOfficeDocument.bat

samples/bin/VerifyMsOfficeSignatures.bat

5.10.2 .Net API Sample Code

The following sample programs demonstrate how the .Net API can be used to send a Verification
Service request and to process the response:

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/VerifyPDF.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/VerifyPdfReport

.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/VerifyPKCS7.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/VerifyXmlEnvelo

ped.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/VerifyCertifica

te.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/VerifyMsOfficeD

ocument.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/VerifyMsOfficeS

ignatures.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/Historical/Veri

fyPDF.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/Historical/Veri

fyPKCS7.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/Historical/Veri

fyXmlEnveloped.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Verification/Historical/Veri

fyCertificate.cs

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/VerifyPDF.bat

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 70 of 181

samples/bin/VerifyPdfReport.bat

samples/bin/VerifyPKCS7.bat

samples/bin/VerifyXmlEnveloped.bat

samples/bin/VerifyCertificate.bat

samples/bin/VerifyMsOfficeDocument.bat

samples/bin/VerifyMsOfficeSignatures.bat

samples/bin/VerifyPDF_historical.bat

samples/bin/VerifyPKCS7_historical.bat

samples/bin/VerifyXmlEnveloped_historical.bat

samples/bin/VerifyCertificate_historical.bat

5.11 ADSS Verification Service Supported Algorithms
The following is a list of signing/hashing algorithms and key lengths that ADSS Verification Service
supports:

ADSS Service Signature Algorithm Hashing
Algorithm

Algorithm / Key Sizes

Verification SHA1WithRSAEncryption
SHA192WithRSAEncryption
SHA224WithRSAEncryption
SHA256WithRSAEncryption
SHA384WithRSAEncryption
SHA512WithRSAEncryption
MD5WithRSAEncryption
RipeMD128WithRSAEncryption
RipeMD160WithRSAEncryption
SHA1withECDSA
SHA224withECDSA
SHA256withECDSA
SHA384withECDSA
SHA512withECDSA

SHA-1
SHA-192
SHA-224
SHA-256
SHA-384
SHA-512
MD5
RipeMD128
RipeMD160

GOST-3411-94

Below are the list of Key
Algorithms and Sizes

 RSA:
1024, 2048, 3072, 4096,
8192

 ECDSA Curves:
o NIST

P-160, P-192, P-224,

P-256, P-384,P-521

o TeleTrust
(Brainpool)
brainpoolp160r1,

brainpoolp160t1,
brainpoolp192r1,
brainpoolp192t1,
brainpoolp224r1,

brainpoolp224t1,
brainpoolp256r1,
brainpoolp256t1,

brainpoolp320r1,
brainpoolp320t1,
brainpoolp384r1,

brainpoolp384t1,
brainpoolp512r1,
brainpoolp512t1

 GOST-3410-2001
512

5.12 Error Codes
ADSS Verification Server returns the following statuses in case of any failure:

Error Code Error Message

42001 Historic time is later than the signing time.

42002 Invalid signature.

42003 CAdES-BES/XAdES-BES signature verification failed.

42004 CAdES-EPES/XAdES-EPES signature verification failed.

42005 CAdES-T/XAdES-T signature timestamp verification failed.

42006 CAdES-C/XAdES-C signature verification failed.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 71 of 181

42007 CAdES-X/XAdES-X signature verification failed.

42008 CAdES-A/XAdES-A signature verification failed.

42009
Signature verification failed - either failed to decrypt the signature or hash
does not match.

42010 Quality level is too low.

42011 Signed request is required.

42012 Signature verification failed.

42013 Request structure is invalid.

42014 Failed to sign verification response.

42015 Failed to authenticate verification request.

42016 ADSS Verification service license is expired.

42017 ADSS Verification service is stopped.

42018 ADSS Verification service not enabled in license.

42019 Failed to verify embedded revocation information.

42020 Signature type not configured.

42021 Signature type not enabled in license.

42022 Validation at historical time not enabled in license.

42023 Invalid signature type.

42024 Invalid PDF document.

42025 No signature found.

42026 Validation at historical time is not configured.

42027 Invalid signature.

42028 Verification profile is not allowed to the client.

42029 An internal error occurred during processing the request.

42030 Certificate validation not enabled in license.

42031 Failed to create CMS signature.

42032 Signature grace period not yet elapsed.

42033 Signing time not present in signature.

42034 Signature enhancement failed.

42036 Verification service not allowed.

42037
Failed to verify revocation information embedded in signature timestamp
token.

42038
Failed to verify revocation information embedded in reference timestamp
token.

42039
Failed to verify revocation information embedded in archive timestamp
token.

42040 Signature verification failed.

42041 Long term signature does not contain a secure timestamp token.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 72 of 181

42042 Signature does not contain signing time.

42043 ADSS Verification service not enabled in system.

42044 Content timestamp verification failed.

42045
Failed to verify embedded revocation information for content timestamp
token.

42046 Signature enhancement is not supported in PDF collection.

42047 Verification profile is inactive.

42048 Verification profile does not exist or marked inactive.

42049 Document is not available.

42050 Originator info not available.

42051 No Time stamping Authorities configured for this verification profile.

42052 Signature enhancement is not allowed to this verification profile.

42053 Failed to generate time stamped verification response.

42054 Default profile not configured and neither found in request.

42055 Hash algorithm is not in the allowed list.

42056 Key algorithm is not in the allowed list.

42057 Key length is not in the allowed list.

42058 XmlDsig signature cannot be enhanced.

42059 CMS signature cannot be enhanced.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 73 of 181

6 ADSS Certification Service
The ADSS Server Certification Service provides support for following protocols:

 Ascertia proprietary XML protocol

 The standard Certificate Management over CMC protocol (CMC)

 The standard Certificate Enrollment over EST protocol (EST)

 via a Java or .Net API.

Following operations are accessible using XML protocol:

 Request and Revoke Certificates

 Renew or delete certificates

 Change the password for a server held key

 Recover a server held key

 Manage the user keys on RAS/SAM

 Get Certificates

Following operations are accessible using CMC protocol:

 Request and Revoke Certificates

Following operations are accessible using EST protocol:

 Request and Revoke Certificates

 Renew/Rekey certificates

 Get CA Certificates

 Request Private Key and Certificate using server key generation

Registered Business Applications send requests to ADSS Server, referring to a particular Certification
Profile, and receive responses back. Normally most certification related parameters do not need to be
sent in the request as they are already set up in the Certification Profile.

The ‘certifying’ Certification Authority (CA) may be a self-signed CA managed by ADSS Server or it may
link to a higher level or root CA which may either be at the server or it can be external.

6.1 Certification Use Cases and Ascertia Protocol Schema
Various certification use cases are possible using the ADSS Certification Service and these and the
Ascertia proprietary protocol schemas are discussed in section 20.

6.2 Certification Profiles
The ADSS Certification Service requires that Certification Profiles are defined at ADSS Server. These
profiles specify which CA will issue the certificates, the key length and key type to be used, the certificate

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 74 of 181

validity period, any default distinguished name parameters (e.g. country name, organisational unit etc.)
and whether the certificate will be automatically renewed on expiry.

Refer to the following online admin guide for an explanation of Certification Profile settings:

Step 2 - Creating a Profile (ascertia.com)

6.3 The Certification Service API
The Certification Service API is provided as part of the ADSS Client SDK and consists of a Certification
Request and a Certification Response class.

6.4 Certification Request Class
The following constructor is used to build the initial Certification Request. There are two variants of this
depending upon whether the certificate is held at ADSS Server as a database item (and referenced
using a certificate name alias or as an X509 certificate object.

var certificationRequest = new CertificationRequest(clientID, requestType,

certificateAlias or X509CertificateObject);

The clientID identifies the business application that is making the call. This clientID must already

be registered at ADSS Server.

The requestType identifies one of the following available services i.e.:

REQUEST_TYPE_CREATE_CERTIFICATE Certificate Creation

REQUEST_TYPE_IMPORT_CERTIFICATE Certificate Import

REQUEST_TYPE_RENEW_CERTIFICATE Certificate Renewal

REQUEST_TYPE_REKEY_CERTIFICATE Certificate Rekey

REQUEST_TYPE_DELETE_CERTIFICATE Certificate Deletion

REQUEST_TYPE_REVOKE Certificate Revocation

REQUEST_TYPE_RECOVER_KEY Recover a .pfx file from the server

REQUEST_TYPE_CHANGE_PASSWORD Change password of a server held .pfx

file

REQUEST_TYPE_AUTHORIZE_CERTIFICATE Bind authorization certificate

REQUEST_TYPE_UNAUTHORIZE_CERTIFICATE Unbind authorization certificate

REQUEST_TYPE_SEND_SCT Send the SCTs to Certification Service

 to add this into the TLSs server

 certificate. For details the see section

 (6.4.13 Example of Send SCT).

REQUEST_TYPE_CACERT CA Certificate Retrieval

REQUEST_TYPE_GET_CERTIFICATES Certificates Retrieval

6.4.1 Certificate Request methods

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send (overridden), SetProxy, SetRequestID,

SetRequestRetries, SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the Certificate Request class:

Certificate Request Method Purpose

AddRespondWithItem(string) This specifies the items that will be returned in the
response. The method can be called multiple times if
multiple items are required.

Currently the following items can be requested:

- RESPOND_WITH_CERTIFICATE

- RESPOND_WITH_PKCS_7

- RESPOND_WITH_PKCS_12

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/step2_creating_a_profile.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 75 of 181

- RESPOND_WITH_PKCS_10

- RESPOND_WITH_EXPIRY_DATE

- RESPOND_WITH_PASSWORD

OverrideProfileAttribute

(policyOverride, string

attributeValue)

This method overrides specific policy values (if this is
permitted by the Certification Policy) and again this may
be called multiple times.

The following are possible policy overrides:

- SUBJECT_DN

- KEY_SIZE

- KEY_TYPE

- CURVE_TYPE

- VALIDITY_PERIOD

- VALIDITY_UNIT

- VALID_TO

SUBJECT_DN allows various distinguished name
fields to be overridden e.g.

CN, G, SN, T, OU, O, OI, E, L, ST, S, P, C,
SERIALNUMBER, UID, B, EVL, EVS and EVC

KEY_SIZE allows an RSA or ECDSA key length to be

overridden.

KEY_TYPE allows a key of a different type to be

specified (either RSA or ECDSA).

CURVE_TYPE allows the NIST P, SEC2 K or Brainpool
curve type to be overridden for ECDSA key type.
Supported Curves are:

- NIST_P

- SEC2_K

- BRAINPOOL_R

- BRAINPOOL_T

Default NIST_P is used when not specified in either
request or profile.

VALIDITY_PERIOD changes the certificate lifetime

and therefore the expiry date of the certificate.

VALIDITY_UNIT change the certificate lifetime validity

period unit of the certificate in 'MINS', 'HOURS',

'DAYS', 'MONTHS' or 'YEARS' i.e.
VALIDITY_UNIT=MONTHS

VALID_TO changes the certificate lifetime, it will set the

certificate validTo date. It will override certificate validity
in profile. The value must be a date string in format
“yyyy-MM-dd'T'HH:mm:ss” e.g. 2020-02-10T15:53:23

Note: It is alternate of VALIDITY_PERIOD/
VALIDITY_UNIT, one need to use VALID_TO or
VALIDITY_PERIOD/VALIDITY_UNIT for certificate
expiry date. If both are used then it will create problems
with the time calculation.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 76 of 181

SetCertificate(X509Certificate

or certificateFilePath)
Specifies a certificate which will be the subject of the
request (e.g. for a revocation request).

SetCmcRequestMode(PKIRequestMo

de)

For a CMC request, this specifies whether a simple
request (SIMPLE_PKI_REQUEST) or full PKI request

(FULL_PKI_REQUEST) is being made.

A simple PKI request consists of a single PKCS#10
whereas the full PKI request consists of a Certificate
Request Message Format (CRMF) message.

SetIssuerDN(issuerDN) Specifies the issuer Distinguished Name to be used for
CMC revocation request.

SetOnholdInstructionCode

(onHoldInstructionCode)

Specifies the ‘on hold’ instruction code, one of:

- CALLISSUER

- NONE

- REJECT

SetPKCS10 (byte[] or filePath) Specifies the PKCS#10 certificate request.

SetPKCS12 (byte[] or filePath) Specifies a PKCS#12 file.

SetPkcs12NewPassword (string) Specifies a new password for the PKCS#12 and is used
only if the request type is ‘change password’.

SetPkcs12Password (string) Specifies the PKCS#12 password. This method is only
used if the key pair is generated at the server and held
at the client.

SetPKCS7 (byte[] or filePath) Specifies a PKCS#7 file containing the certificate chain.

SetProfileId (string) Specifies the ADSS Server Certification Profile ID used
to service the request.

SetRequestMode(int) Specifies the Request Mode which can be either
XML,CMC or EST. XML is the default.

Note, if CMC is used the communication must be over
mutually authenticated TLS, i.e. port 8779. See also
‘SetSslClientCredentials’.

addSubjectAlternativeName

(string, string)
It is used to add subject alternative name extension in
X.509 certificate. The first parameter specifies SAN
key. The possible values for key are:

- rfc822Name

- dNSName

- iPAddress

- uniformResourceIdentifier

- registeredID

- ediPartyName

- directoryName

- otherName

while the second parameter specifies value for the SAN
extension. If the provided key is "otherName", the string
for this attribute should be in one of the following
formats.

 OID=value, encoding=UTF8String

 OID=value, encoding=OctetString

 OID=value, encoding=PrintableString

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 77 of 181

Consider the following for example:

 1.2.3.4.5=Other Name,

encoding=UTF8String

If the provided key is "ediPartyName", the string for this
attribute should be in one of the following formats.

NameAssigner=DummyName,encoding:Printabl

eString,

PartyValue=DummyPartyName,encoding:Unive

rsalString

Consider the following for example:

DummyName,encoding:PrintableString=

DummyPartyName,encoding:UniversalString

This method can be called multiple times in order to add
multiple names in subject alternative name extension.

SetRevocationReason (string) Specifies the Revocation Reason, one of:

REVOCATION_REASON_AACOMPROMISE

REVOCATION_REASON_AFFILIATIONCHANGED

REVOCATION_REASON_CACOMPROMISE

REVOCATION_REASON_CERTIFICATE_HOLD

REVOCATION_REASON_CESSATION_OF_OPERATION

REVOCATION_REASON_KEYCOMPROMISE

REVOCATION_REASON_PRIVILEGEWITHDRAWN

REVOCATION_REASON_REMOVE_FROM_CRL

REVOCATION_REASON_SUPERSEDED

REVOCATION_REASON_UNSPECIFIED

SetAuthCertAlias (string) Specifies the authorization certificatete alias for second
factor authentication to generate qualified signature on
the server.

setUserId (String) User ID to identify and authenticate at the RAS/SAM
server.

It is a mandatory parameter in the user enrollment
request.

addSCT(SctInfo) SCT object will be added by the client application with
information like version, timestamp, signature etc.

setClientSecret(String)
Client Secret to authenticate the client application in
caes EST APIs as it requires the Basic Authentication.

SetSubjectDN(subjectDN)
Specifies the Subject Distinguished Name to be used
to get the certificate

SetStatus(status)
Specifies the status of the certificate to be used to get
the certificate

SetSerialNumber(serialNumber)
Specifies the serialNumber of the certificate to be used
to get or revoke the certificate

6.4.2 Other Certification Request Methods

Some other Certification Request methods are defined such as those for communication purposes (e.g.
use of proxy, timeouts etc.):

SetProxy, SetRequestID, SetRequestRetries, SetTimeout.

For these and others refer to the JavaDoc and Sandcastle documentation.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 78 of 181

6.4.3 Sending the Certification Request

Once the certification request message has been fully built using the above methods, it can be sent to
ADSS Server using the following call:

var certificationResponse = (CertificationResponse)certificationRequest.Send(URL);

The Certification Service URL for XML protocol e.g.

http://machine-name:8777/adss/certification/csi

For a mutually authenticated TLS request, it is:

https://machine-name:8779/adss/certification/csi

The Certification Service URL for CMC protocol e.g.

https://machine-name:8779/adss/certification/cmc

The Certification Service URL for EST protocol e.g.

http://machine-name:8777/ .well-known/est/simpleenroll

http://machine-name:8777/ .well-known/est/simplereenroll

http://machine-name:8777/ .well-known/est/serverkeygen

https://machine-name:8778/ .well-known/est/cacerts

http://machine-name:8777/ .well-known/est/fullcmc

For a mutually authenticated TLS request, it is:

https://machine-name:8779/ .well-known/est/simpleenroll

https://machine-name:8779/ .well-known/est/simplereenroll

https://machine-name:8779/ .well-known/est/serverkeygen

https://machine-name:8779/ .well-known/est/fullcmc

6.4.4 Example of a Certificate Request (Ascertia XML protocol)

http://machine-name:8777/adss/certification/csi
https://machine-name:8779/adss/certification/csi
https://machine-name:8779/adss/certification/cmc
http://machine-name:8777/adss/certification/csi
http://machine-name:8777/adss/certification/csi
http://machine-name:8777/adss/certification/csi
https://machine-name:8778/%20.well-known/est/
http://machine-name:8777/adss/certification/csi
https://machine-name:8779/%20.well-known/est/
https://machine-name:8779/%20.well-known/est/
https://machine-name:8779/%20.well-known/est/
https://machine-name:8779/%20.well-known/est/

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 79 of 181

6.4.5 Example of a Certificate Revocation Request (Ascertia XML protocol)

6.4.6 Example of Certificate Deletion Request (Ascertia XML protocol)

6.4.7 Example of Certificate Change Password Request (Ascertia XML protocol)

6.4.8 Example of Certificate Recover Key Request (Ascertia XML protocol)

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 80 of 181

6.4.9 Example of Renew Certificate Request (Ascertia XML protocol)

6.4.10 Example of Rekey Certificate Request (Ascertia XML protocol)

6.4.11 Example of a Profile Info Request (Ascertia XML protocol)

6.4.12 Example of a Get Certificates Request (Ascertia XML protocol)

User can get a certificate on the basis of Subject DN, Serial Number, User ID or Status, or by using any
combination of these parameters. However, it should be noted that the user must provide at least one
certificate attribute amongst Subject DN, User ID and Serial Number in order to get the certificate

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 81 of 181

6.4.13 Example of Send SCT (Ascertia XML protocol)

This request type is used in a scenario where issueing CA is using the delegation for Certificate
Transparency. The following option against a local ADSS must be enabled for this:

ADSS Console > Manage CAs > Local CAs > Certificate Transparency Settings > Delegate
PreCertificate Logging process to other entities.

In this case the CA is normally operating in an internal zone and can't communicate with the configured
CT Log Servers over the internet so the CA asks the client applications to communicate with the CT
Log Servers and get the SCTs. In this use case, when you send a request to Certification Service to
create or renew a certificate, the service responds with a "WAITING" status and provides the pre-
certificate, its chain,

and the Log Servers addresses. The client application communicates with the Log Servers to log the
pre-certificate and get the SCTs.

Below is the example to communicate with a Log Server

Item Details

Name Description

Request Parameters

chain Certifiate chain which needs to be submitted to log server

Response Parameters

Sct_version Version of SCT e.g v1

http://<server>/ct/v1/add-pre-chain

HTTP Verb POST

Content-Type application/json

Accept application/json

Request Body

{

 "chain": ["MIICxDCCAawCAQAwfzELM[....]5f52oQ==",

 "MIICxDCCAawCAQAwfzELM[....]5f52oQ==",

 "MIICxDCCAawCAQAwfzELM[....]5f52oQ=="

]

}

Status Code Message Response Body

200 OK

{

 "sct_version": 0,

 "id": "o8mYRegKt84AFXs3Qt8CB90nKytgLs+Y7iwS25xa5+c=",

 "timestamp": 1600931634873,

 "extensions": "",

 "signature": "BAMARjBEAiBCM7fivQ="

}

400 Bad Request

500
Internal Server
Error

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 82 of 181

id ID of SCT

timestamps Time in millisecons

extensions Extension in SCT

Signature Signature of SCT

SCT via Postman

Once it has collected the SCTs, the client application will use this request type (Send SCT) to send
the SCTs to Certification Service. The Service issues a certificate embedding the SCTs into it and
returns the certificate in response.

6.4.14 Example of Certificate Request (CMC Protocol)

The example below shows a certificate request sent with the CMC protocol using HTTPS with mutual
authentication. See also section 3.2.1 for a discussion on using SSL/TLS with ADSS Server

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 83 of 181

6.4.15 Example of Certificate Request Using Simple Enroll API (EST Protocol)

The example below shows a certificate request sent with the EST protocol using HTTPS with mutual
authentication. See also section 3.2.1 for a discussion on using SSL/TLS with ADSS Server

This API will be used to issue a new certificate.

Code Example

6.4.16 Example of Certificate Renew/Rekey Request Using Simple Re Enroll API
(EST Protocol)

The example below shows a certificate request sent with the EST protocol using HTTPS with mutual
authentication. See also section 3.2.1 for a discussion on using SSL/TLS with ADSS Server

Following URL we used for simple re enroll API for renew/rekey a certificate using EST protocol.

https://<server>:8779/.well-known/est/simplereenroll

This API will be used to renew/rekey an existing certificate. For both renew/rekey, the client will send
us a PKCS#10 in request with the same Subject DN and SubjectAltName that was used in old certificate.

If the PKCS#10 will contain the same old key, it will be a renew request. But if the public key will be
different than the old one, it will be treated as a rekey request.

The request/response structure for this API is same as /simpleenroll API defined in section 6.4.12

Code Example

Code Example

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 84 of 181

6.4.17 Example of Certificate Request Using Serverkeygen API (EST Protocol)

The example below shows a certificate request sent with the EST protocol using HTTPS with mutual
authentication. See also section 3.2.1 for a discussion on using SSL/TLS with ADSS Server.

This API is used to generate a key-pair at server side and then issue a certificate. It also returns the
newly generated private key in the response. Since it has to return the private key so this API can only
generate software based keys and not hardware.

Code Example

6.4.18 Example of Get CA Certificate Request Using CA Cert API (EST Protocol)

This API is used to get CA certificates that client can add to their trust anchors.

Code Example

6.4.19 Example of Certificate Revoke Request Using Full CMC API (EST Protocol)

The example below shows a certificate request sent with the EST protocol using HTTPS with mutual
authentication. See also section 3.2.1 for a discussion on using SSL/TLS with ADSS Server

The EST protocol allows clients to send CMC requests using this API. In response, an EST server
processes these requests and return CMC responses.

Code Example

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 85 of 181

6.5 Certification Response Class
The following methods of the Certification Response class are inherited from the generic Response and
Message classes and are described in section 3 as well as in the JavaDoc and Sandcastle class
documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetRequestID, GetSigningCertificates, GetStatus,

IsSuccessful.

In addition, the following methods are specific to the Certification Response Class:

Certificate Response Method Purpose

GetCertificate() returns

X509Certificate
Returns the X509 certificate object.

GetExpiryDate() returns

DateTime
Returns the expiry date of the certificate.

GetPKCS12() returns byte[] Returns the PKCS#12 file.

GetPKCS10() returns byte[] Returns the PKCS#10 file.

GetPkcs12Password() returns

string
Returns the PKCS#12 password.

GetPKCS7() returns string Returns the PKCS#7 certificate chain.

GetProfileId() returns string Returns the Certification Profile ID used by the
Certification Service to process the request.

PublishCertificate(string

/Stream)
Publishes the certificate to the specified path or stream.

PublishPKCS12(string /Stream) Publishes the PKCS#12 data to the specified path or
stream.

PublishPKCS7(string /Stream) Publishes the PKCS#7 data to the specified path or
stream.

PublishPKCS10(string /Stream) Publishes the PKCS#10 data to the specified path or
stream.

publishPKCS8PrivateKey(stri

ng /Stream)
Publishes the PKCS8 data to the specified path or
stream.

GetRequestId() returns string Returns the Request ID of the certification request.

GetProfileInfo() returns

ProfileInfoType
Returns the ProfileInfoType object.

getPrecertificate() returns

PreCertificateLogInfo
Returns the PreCertificateLogInfo in case of ‘Delegate
the Precertificate logging process to other entities’
check is enabled in Mange CA -> Local CA settings

GetCertificateInfo() returns

CertificateInfoListType

Returns the CertificateInfoListType object.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 86 of 181

6.6 Certification Service Sample Code
Java and .Net sample code is provided as part of the ADSS Client SDK and can be used to make
Certification Service requests and to process the Certification Service responses.

The Java API provides the required classes under the package:

com.ascertia.adss.client.api.certification

The .Net API provides the required classes under the namespace:

Com.Ascertia.ADSS.Client.API.Certification

6.6.1 Java API Sample Code

The following sample programs demonstrates how the Java API can be used to send a Certification
request and process the response:

samples/src/com/ascertia/adss/client/samples/certification/AddSct.java

samples/src/com/ascertia/adss/client/samples/certification/GenerateCertif

icate.java

samples/src/com/ascertia/adss/client/samples/certification/RevokeCertific

ate.java

samples/src/com/ascertia/adss/client/samples/certification/DeleteCertific

ate.java

samples/src/com/ascertia/adss/client/samples/certification/RenewCertifica

te.java

samples/src/com/ascertia/adss/client/samples/certification/RevokeCertific

ateWithSerialNumber.java

samples/src/com/ascertia/adss/client/samples/certification/RecoverKey.jav

a

samples/src/com/ascertia/adss/client/samples/certification/ChangePassword

.java

samples/src/com/ascertia/adss/client/samples/certification/

GetCertificationProfileInfo.java

samples/src/com/ascertia/adss/client/samples/certification/

GetCertificates.java

A precompiled and ready to run version of the above sample programs can be found at:

samples/bin/AddSct.bat

samples/bin/GenerateCertificate.bat

samples/bin/RevokeCertificate.bat

samples/bin/RevokeCertificateWithSerialNumber.bat

samples/bin/DeleteCertificate.bat

samples/bin/RenewCertificate.bat

samples/bin/RecoverKey.bat

samples/bin/ChangePassword.bat

samples/bin/CertificateProfileInfo.bat

samples/bin/GetCertificates.bat

6.6.2 .Net API Sample Code

The following sample programs demonstrates how the .Net API can be used to send a Certification
Service request and process the response:

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/AddSCT.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/GenerateCertif

icate.cs

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 87 of 181

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/RevokeCertific

ate.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/

RevokeCertificateWithSerialNumber.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/DeleteCertific

ate.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/RenewCertifica

te.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/RecoverKey.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/ChangePassword

.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/GetCertificati

onProfileInfo.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/Certification/GetCertificate

s.cs

A precompiled and ready to run version of the above sample programs can be found at:

samples/bin/AddSCT.bat

samples/bin/GenerateCertificate.bat

samples/bin/RevokeCertificate.bat

samples/bin/RevokeCertificateWithSerialNumber.bat

samples/bin/DeleteCertificate.bat

samples/bin/RenewCertificate.bat

samples/bin/RecoverKey.bat

samples/bin/ChangePassword.bat

samples/bin/CertificateProfileInfo.bat

samples/bin/GetCertificates.bat

6.7 ADSS Certification Service Supported Algorithms
The following is a list of signing/hashing algorithms and key lengths that ADSS Certification Service
supports:

ADSS Service Signature Algorithm Hashing Algorithm Algorithm / Key Sizes

Certification using
LOCAL CA

SHA1WithRSAEncryption
SHA224WithRSAEncryption
SHA256WithRSAEncryption
SHA384WithRSAEncryption
SHA512WithRSAEncryption
RipeMD128WithRSAEncryp
tion
RipeMD160WithRSAEncryp
tion
SHA1withECDSA
SHA224withECDSA
SHA256withECDSA
SHA384withECDSA
SHA512withECDSA

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512
RipeMD128
RipeMD160

Below are the list of Key
Algorithms and Sizes

 RSA:
1024, 2048, 3072, 4096,

8192
 ECDSA Curves:

o NIST
P-160, P-192, P-224,
P-256, P-384,P-521

o SEC
secp256k1

o TeleTrust
(Brainpool)
brainpoolp160r1,

brainpoolp160t1,
brainpoolp192r1,
brainpoolp192t1,
brainpoolp224r1,

brainpoolp224t1,
brainpoolp256r1,
brainpoolp256t1,

brainpoolp320r1,
brainpoolp320t1,
brainpoolp384r1,

brainpoolp384t1,
brainpoolp512r1,
brainpoolp512t1

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 88 of 181

6.8 Error Codes
ADSS Certification Service returns the following statuses in case of any failure:

Error Code Error Message

43016 ADSS Certification service is not enabled in license.

43014 ADSS Certification service license is expired.

43053 ADSS Certification service is not enabled in the system.

43015 ADSS Certification service is stopped.

43041 Manage CAs module is not enabled in license.

43019 Certification request must be signed.

43020 Failed to verify certification request signature.

43021 Request does not comply with Ascertia certification XML schema.

43002 Certificate alias is missing in the request.

43011 Requested certificate alias already exists.

43009 Internal error occurred during processing of the request.

43001 Certification profile attributes not found.

43049 CA configured in the requested profile is inactive.

43054 Key size is not supported.

43027 PKCS#10 does not comply with the certification profile.

43030 Failed to insert certificate in database.

43005 PKCS#10 signature verification failed.

43063
To be issued certificate expiry date/time is beyond the CA Certificate expiry
date/time.

43035 Request does not contain PKCS#12/PFX password.

43017 Valid subject DN could not be composed.

43513 Requested certificate does not comply with CA's Extended Key Usages.

43512 Requested certificate does not comply with CA's Basic Constraints.

43511 Requested certificate does not comply with CA's Name Constraints.

43514 Requested certificate does not comply with CA's Certificate Policies.

43003 Request contains insufficient information.

43006 Certificate alias does not exist.

43007 Certificate does not belong to the specified client.

43012 Failed to delete certificate.

43052 Certificate with status NotYetValid cannot be deleted.

43008 Active certificate cannot be deleted.

43026 Revoked certificate cannot be renewed.

43029 Failed to renew certificate, old key pair does not exist.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 89 of 181

43034 PKCS#12/PFX not found in the database.

43004 Request contains invalid old password for PKCS#12/PFX.

43038
Failed to process request - Issuer DN in request does not match with issuer
DN found in the certificate

43023 Certificate is already revoked.

43031 Certificate is already on hold.

43032 Certificate is not revoked.

43039 Expired certificate cannot be revoked.

43051 Certificate with status NotYetValid cannot be revoked.

43033 Invalid revocation reason or hold instruction code.

43018 Failed to revoke certificate.

43024 Failed to change PKCS#12/PFX password.

43061 Invalid old password in the request.

43062 New password not available in the request.

43040 Failed to verify PKCS#10.

43047 Invalid PKCS#10.

43048 PKCS#10 is missing in the request.

43059 Subject DN is missing in the request.

43050 ADSS Certification service is not allowed for this client.

43055 Certification profile is inactive.

43056 Certification profile does not exist.

43042 Certification profile in request is not allowed to the client.

43043
TLS client authentication certificate does not match with the configured
client authentication certificate.

43515 Failed to process request - the signer certificate is in pending state.

43570 Failed to process request - PreIssuedCertificate not found.

43081 Failed to process request - Basic Authorization Header is missing/invalid

43082 Failed to process request - Content-Type is missing/invalid

43083 Failed to process request - invalid or unsupported EST request type

43084 Failed to process request - Crypto profile must be Software

43085
Failed to process request - SAN in PKCS#10 doesnot match with SAN
defined in Issued Certificate

43086
Failed to process request - Subject DN in PKCS#10 doesnot match with
Subject DN defined in Issued Certificate

43087 Failed to process request - Multiple certificates with the same Subject DN

43088
Failed to process request - Certificate already exists with the same Subject
DN

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 90 of 181

43089
Failed to process request - Certificate Primary Key structure does not
generated

43090 Failed to process request - No CA is selected as Default

43091
Failed to process request - Client ID in authorization header does not
match with client configured for TLS Client certificate.

43092 Failed to process request - SImple PKI Request is not allowed

43093 Failed to process request - Certificate serial number does not exist

43098
Failed to process request - Certificate serial number does not exist or it
does not match the IssuerDN in the request

43099
Failed to process request - Multiple certificates associated with the given
serial number. To facilitate a more targeted search include the issuerDN in
the request

43500 Failed to process request – Certificate does not exist with given information

43572
Failed to process request – One value should be present from these
values: Subject DN, User ID and Serial Number

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 91 of 181

7 ADSS OCSP Service
The ADSS Server OCSP Service provides an RFC 6960/FIPS 201 and RFC 8954 compliant real-time
digital certificate OCSP validation authority service.

There are two different ways in which the ADSS OCSP Service can be utilised to produce OCSP
validation responses:

 As the definitive certificate status responder for a particular CA. The CA can be internal to
ADSS Server or external.

 Forwarding OCSP Requests to a peer OCSP Responder. In this scenario, the ADSS OCSP
Service may forward requests to multiple OCSP Responders depending upon the issuing CAs
involved. An example of this could be a banking network.

7.1 Setting up ADSS OCSP Service Profiles
The ADSS OCSP Service requires that OCSP Profiles are defined at ADSS Server. These enable
separate policies for each CA for which the OCSP Service is responding.

Refer to the following online admin guide for an explanation of OCSP Profile settings:

Configuring the OCSP Service (ascertia.com)

7.2 The ADSS OCSP Service API
In order to simplify the use of the RFC 6960 and RFC 8954 OCSP protocol, an OCSP Service API is
provided as part of the ADSS Client SDK.

The API consists of the following classes:

 OCSP Request

 OCSP Response

7.3 OCSP Request Class

7.3.1 OCSP Request Constructor

The OCSP Request Class has two constructors depending upon whether the input parameters are
supplied as file paths or the actual certificates. Both the certificate to be validated and the issuer
certificate are required:

var ocspRequest = new OcspRequest(x509CertificateToValidate,

x509IssuerCertificate)

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/configuring_the_ocsp_service.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 92 of 181

7.3.2 OCSP Request Methods

The OCSP Request Class (OcspRequest) inherit a number of methods from the generic Request and
Message classes which are described in section 3 as well as in the JavaDoc and Sandcastle class
documentation:

ToString, WriteTo, Send (overridden), SetProxy, SetRequestID,

SetRequestRetries, SetSigningCredentials (overridden),

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the OCSP Request Class:

OCSP Request method Purpose

AddCertificate (string,

string) or

AddCertificate

(X509Certificate,

X509Certificate)

Add an additional certificate to be validated. Both the
certificate to be validated and the issuer certificate are
required.

SetNonce(long nonce) Specifies a random ‘nonce’ value to require the OCSP to
give a fresh response. As per RFC 8954, the length of the
nonce MUST be at least 1 octet and can be up to 32 octets

SetServiceLocator(bool

serviceLocator)
Sets the service locator flag. This specifies that the request
is to be routed to the authoritative OCSP Responder as
specified in the target certificate.

AddPreferredSignatureAlgo(

String

preferredSignatureAlgo)

Add preferred signature algorithms in the request as per
RFC 6960 to sign the response.

SetHashAlgo(string

a_strHashAlgo)
It specifies which hash algorithm is used for CertID. Default
hash algorithm is SHA256.

7.3.3 Sending the OCSP Request

Once the OCSP request message has been prepared, it is sent to ADSS Server using the following
method call:

var ocspResponse = (OcspResponse)ocspRequest.Send(ocspServiceAddress);

The service address URL is that of the OCSP Service e.g. http://machine-name:8777/adss/ocsp

Note that on receiving the response the GetCertStatus() method should be called to confirm that

the request has been successful and certificate status is returned – see section 7.4 below.

7.3.4 Example of creating and sending an OCSP Request

http://machine-name:8777/adss/ocsp

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 93 of 181

7.4 OCSP Response Class
The OCSP Response class (OcspResponse) inherits the following methods from the Response and
Message classes. There are described in section 3 as well as in the JavaDoc and Sandcastle class
documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetSigningCertificates, GetStatus, IsSuccessful.

In addition, the following methods are specific to the class:

OCSP Response Method Purpose

GetCertStatus() returns int

or if multiple certificates

were processed

GetCertStatus(X509Certificate)

returns int

Returns the certificate status for the target certificate.
The returned integer value is one of:

OcspResponse.GOOD

OcspResponse.REVOKED, or

OcspResponse.UNKNOWN

GetNextUpdate()returns

DateTime

or if multiple certificates

were processed

GetNextUpdate(X509Certificate)

returns DateTime

Returns the “nextUpdate” value of the relevant CRL.

GetNonce() returns byte[] Returns the nonce value of the OCSP response. This
is used to ensure the OCSP Service /Responder has
provided a fresh response. As per RFC 8954 If the
Nonce extension value in the request will be less than
16 octets, then nonce will not be available in the
response

GetOcspResponse() returns

OcspResponse
Returns the OCSP response from OCSP Service.

GetThisUpdate() returns

DateTime or if multiple

certificates were processed

GetThisUpdate(X509Certificate)

It returns the "thisUpdate" of the relevant CRL.

GetProducedAt() returns

DateTime
It returns the OCSP response producedAt time.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 94 of 181

7.4.1 Example of processing an OCSP Service Response

7.5 OCSP Service Sample Code
Java and .Net sample code is provided as part of the ADSS Client SDK and can be used to make OCSP
Service requests and to process the responses.

The Java API provides the required classes under the package:

com.ascertia.adss.client.api.ocsp

The .Net API provides the required classes under namespace:

Com.Ascertia.ADSS.Client.API.OCSP.

7.5.1 Java API Sample Code

The following sample programs demonstrate how the Java API can be used to send an OCSP validation
request to the OCSP Service and to process the response:

samples/src/com/ascertia/adss/client/samples/ocsp/OcspRequest.java

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/OcspValidate.bat

7.5.2 .Net API Sample Code

The following sample programs demonstrate how the .Net API can be used to send an OCSP validation
request to the OCSP Service and to process the response:

samples/src/Com/Ascertia/ADSS/Client/Samples/OCSP/OcspRequest.cs

A precompiled and ready to run version of the above sample program can be found at:

samples/bin/OcspValidate.bat.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 95 of 181

7.6 ADSS OCSP Service Supported Algorithms
The following is a list of signing/hashing algorithms and key lengths that ADSS OCSP Service supports:

ADSS Service Signature Algorithm Hashing Algorithm Algorithm / Key Sizes

OCSP SHA1WithRSAEncryption
SHA224WithRSAEncryption
SHA256WithRSAEncryption
SHA384WithRSAEncryption
SHA512WithRSAEncryption
SHA3-224WithRSAEncryption
SHA3-256WithRSAEncryption
SHA3-384WithRSAEncryption
SHA3-512WithRSAEncryption
RipeMD128WithRSAEncryption
RipeMD160WithRSAEncryption
SHA1withECDSA
SHA224withECDSA
SHA256withECDSA
SHA384withECDSA
SHA512withECDSA

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512
SHA3-224
SHA3-256
SHA3-384
SHA3-512
RipeMD128
RipeMD160

RSA:
1024, 2048, 3072, 4096

ECDSA:
192,224,256,384,521

7.7 Error Codes
ADSS OCSP Service returns the following statuses in case of any failure:

OCSP Response Status OCSP Single
Response Status

Description

tryLater N/A ADSS OCSP Server is stopped.

HTTP 400 – Bad Request N/A Invalid HTTP POST request type. Valid value
is “application/ocsp-request”.

malformedRequest N/A Invalid OCSP request format.

malformedRequest N/A Invalid Nonce value – As per RFC 8954

If the Nonce extension is present, then the
length of the nonce MUST be at least 1 octet
and can be up to 32 octets

unauthorized N/A ADSS OCSP Server license is expired.

unauthorized N/A ADSS OCSP Server disabled in license.

unauthorized N/A TLS client certificate status is revoked.

unauthorized N/A TLS client certificate status is indeterminate.

unauthorized N/A ADSS OCSP Service access control check
failed.

unauthorized N/A Number of certIDs in OCSP request greater
than the configured certIDs count.

malformedRequest N/A No certID present in the OCSP request.

sigRequired N/A ADSS OCSP Server expected signed OCSP
request from client.

unauthorized N/A OCSP request signing certificate contains
unsupported critical extensions.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 96 of 181

unauthorized N/A OCSP request signing certificate does not
contain digital signature and non-repudiation
KU extension.

unauthorized N/A OCSP request signing certificate is expired.

unauthorized N/A OCSP request signing certificate is not yet
valid.

unauthorized N/A OCSP request signature verification failed.

unauthorized N/A OCSP request signing certificate is not
trusted in ADSS OCSP Server.

unauthorized N/A OCSP request signing certificate status is
revoked.

unauthorized N/A OCSP request signing certificate status is
indeterminate.

internalError N/A If OCSP request is for foreign CA and OCSP
request is unsigned and also default OCSP
policy is not configured.

unauthorized N/A OCSP request does not contain nonce
extension.

successful revoked CA status is revoked in ADSS OCSP Server.

successful unknown CA status is inactive in ADSS OCSP Server.

successful revoked Target certificate status is revoked.

successful unknown Target certificate status is unknown.

unauthorized N/A Request forwarding is disabled in the
selected policy and
STATUS_FOR_NON_REGISTERED_CA is
set to “unauthorized” in ADSS OCSP
Server.

successful unknown Request forwarding is disabled in the
selected policy and
STATUS_FOR_NON_REGISTERED_CA
not set to “unauthorized” in ADSS OCSP
Server.

trylater N/A Unable to communicate with peer OCSP
responder.

successful unknown Request forwarding is enabled and OCSP
server address not available either in service
locator extension or manually configured
OCSP address.

unauthorized N/A Preferred OCSP response signature
algorithm set in OCSP request by client is not
supported by OCSP server.

internalError N/A Internal error in ADSS OCSP Server

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 97 of 181

8 ADSS TSA Service
The ADSS Server Timestamp Authority (TSA) Service complies with the RFC3161 specifications and
its purpose is to produce secure cryptographic timestamp tokens for any type of document, digital
signature or data, to prove the existence of the data item at a specific date and time.

There are two different ways in which the ADSS TSA Service can be utilised to produce timestamp
tokens:

 Using the TSA Service local TSA keys.

 Forwarding timestamp requests to an external TSA (in this case the TSA Service acts as a
concentrator for timestamp requests, which are being serviced by one or more back-end TSAs).

8.1 Setting up ADSS TSA Profiles
The ADSS TSA Service requires that TSA Profiles are available for the ADSS TSA Service. These
profiles define the format and characteristics of the timestamp tokens produced.

Refer to the following online admin guide for an explanation of TSA Profile settings:

Step 2 - Configuring TSA Profile (ascertia.com)

8.2 The ADSS TSA Service API
In order to simplify the use of the RFC3161 TSA protocol, a TSA Service API is provided as part of the
ADSS Client SDK.

The API consists of the following classes:

 TSP Request

 TSP Response

8.3 TSP Request Class

8.3.1 Timestamp Request Constructor

The Timestamp Request Class has a single constructor which is used to supply the data to be
timestamped:

var timestampRequest = new TspRequest(byteData);

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/step2_configuring_tsa_profile.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 98 of 181

8.3.2 Timestamp Request Methods

The TSP Request Class (TspRequest) inherit a number of methods from the generic Request and
Message classes described in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send (overridden), SetProxy, SetRequestRetries,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the TSP Request Class:

Timestamp Request method Purpose

SetDigestAlgorithm (string

digestAlgorithm)
Specifies the algorithm to be used for hashing/digesting the
data to be timestamped.

SetNonce(long nonce) Specifies a random ‘nonce’ value to require the TSA Service
to give a fresh response.

SetPolicyId(string policy) Specifies the TSA policy Id.

SetRequestCertificate(bool

flag)
Flag to request the TSA certificate is sent in the response.
Setting this flag to ‘true’ explicitly requires you to also call
the method SetVerifyResponse(true).

SetComputeMessageImprint(b

ool flag)
Flag either to calculate the message imprint of the data or
not.

8.3.3 Sending the Timestamp Request

Once the timestamp request message has been constructed and fully populated, it is sent to ADSS
Server using the following method call:

var timestampResponse = (TspResponse)timestampRequest.Send (URL);

where URL is that of the TSA Service e.g. http://machine-name:8777/adss/tsa

Note that on receiving the response the GetPkiStatus() method should be called to confirm that the

request has been successful and a timestamp token returned – see section 8.4 below.

8.3.4 Example of creating and sending a Timestamp Request

8.4 Timestamp Response Class
The Timestamp Response class (TspResponse) inherits the following methods from the Response and
Message classes. There are described in section 3 as well as in the JavaDoc and Sandcastle class
documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetSigningCertificates, GetStatus, IsSuccessful.

In addition, the following methods are specific to the class:

http://machine-name:8777/adss/tsa

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 99 of 181

Timestamp Response Method Purpose

GetPkiStatus() returns int Returns the status of TSP response with these possible
integer values:

- GRANTED

- GRANTED_WITH_MODS

- REJECTION

- REVOCATION_NOTIFICATION

- REVOCATION_WARNING

- WAITING.

A value or either GRANTED or GRANTED_WITH_MODS

means that a Timestamp token is provided as part of
the response. Any other response indicates that no
token is present.

GetNonce() returns long

Returns the nonce value of the TSP response. This is
used to ensure the TSA Service is providing a fresh
response.

GetTimestampToken() returns

TimeStampToken
Returns the timestamp token object.

(Note the
org.Bouncycastle.Tsp.TimeStampToken is

provided as a class by the itextsharp.dll library

which is therefore required as a reference in the
calling application).

8.4.1 Example of processing a TSA Service Response

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 100 of 181

8.5 TSA Service Sample Code
Java and .Net sample code is provided as part of the ADSS Client SDK and can be used to make TSA
Service requests and to process the responses.

The Java API provides the required classes under the package:

com.ascertia.adss.client.api.tsa

The .NET API provides the required classes under the namespace:

Com.Ascertia.ADSS.Client.API.TSA

8.5.1 Java API Sample Code

The following sample programs demonstrate how the Java API can be used to send a timestamp
request to the TSA Service and to process the response:

samples/src/com/ascertia/adss/client/samples/tsa/TsaRequest.java

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/TsaRequest.bat

8.5.2 .Net API Sample Code

The following sample programs demonstrate how the .Net API can be used to send a timestamp request
to the TSA Service and to process the response:

samples/src/Com/Ascertia/ADSS/Client/Samples/TSA/TsaRequest.cs

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/TsaRequest.bat

8.6 ADSS TSA Service Supported Algorithms
The following is a list of signing/hashing algorithms and key lengths that ADSS TSA Service supports:

ADSS Service Signature Algorithm Hashing Algorithm Algorithm / Key Sizes

TSA SHA1WithRSAEncryption
SHA256WithRSAEncryption
SHA384WithRSAEncryption
SHA512WithRSAEncryption
RipeMD128WithRSAEncryption
RipeMD160WithRSAEncryption
SHA1withECDSA
SHA224withECDSA
SHA256withECDSA
SHA384withECDSA
SHA512withECDSA

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512
RipeMD128
RipeMD160
SHA3-224
SHA3-256
SHA3-384
SHA3-512

RSA:
1024, 2048, 3072, 4096

ECDSA:
192,224,256,384,521

8.7 Error Codes
ADSS TSA Service returns the following statuses in case of any failure:

PKI Status PKI FailureInfo PKI FreeText

rejection N/A ADSS TSA Server disabled in license.

rejection N/A ADSS TSA Server is stopped.

HTTP 400 – Bad Request N/A Invalid TSA request format.

HTTP 403 – Forbidden N/A ADSS TSA Server license is expired.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 101 of 181

revocationNotification N/A Client application TLS certificate status is
revoked.

rejection N/A Client application TLS certificate status is
unknown.

HTTP 403 – Forbidden N/A TSA request authorisation failed.

rejection unacceptedPolicy Invalid TSA policy.

rejection badDataFormat TSA policy required in TSA request

rejection systemFailure Internal error occurred while processing the
request.

rejection unacceptedExtension TSA request contains one or more
unrecognised extensions.

rejection badDataFormat Required fields are missing in TSA request.

rejection badAlg Hash length in TSA request does not match
with hash algorithm.

rejection badAlg Unsupported hash algorithm used to
compute message imprint.

rejection badDataFormat TSP certReq flag not set in timestamp
request.

rejection TSA certificate is expired.

rejection systemFailure External TSA address not configured.

rejection timeNotAvailable External TSA request timed out.

rejection timeNotAvailable External TSA request forwarding failed.

rejection systemFailure Failed to communicate with any of the NTP
Servers.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 102 of 181

9 ADSS XKMS Service
The ADSS Server XKMS Service provides certificate validation services by supporting the XML Key
Information Service (X-KISS) part of the XML Key Management Specification (XKMS 2.0) standard
(http://www.w3.org/TR/2005/REC-xkms2-20050628/).

The protocol binding used is SOAP over HTTP(S) and a single stage synchronous protocol is used.
Two variants are supported:

 Validation of a single certificate

 Validation of multiple certificates (a compound request)

Business applications typically use the XKMS Service when validating a certificate as part of XML digital
signature verification. The ADSS Server Verification Service also makes use of the XKMS Validate
Service when verifying XML digital signatures.

Business Client Applications send requests to the XKMS Validation Service to check that the target
certificate is trusted, i.e. it is issued by a trusted CA, it has not expired, it is not revoked, it contains valid
fields and extensions etc. The business application then receives a response back from the service

The majority of the verification parameters are already set up in profiles at the server but some may be
overridden if permitted by the profile (e.g. certificate or key quality). The Business Application just needs
to provide a list of the items it requires back in the response.

All the Trust Services shown above are provided either by ADSS Server or they can be external.

9.1 Support for the PEPPOL standard
The XKMS Service also implements PEPPOL Deliverable D1.1, Requirements for Use of Signatures in
Public Procurement Processes:

 Part 5: XKMS v2 Interface Specification, and

 Part 7: eID and eSignature Quality Classification.

9.2 Setting up XKMS Validation Profiles
The ADSS XKMS Validation Service requires that XKMS Validation Profiles are defined at ADSS
Server. These profiles specify trust anchors and certificate policies; define permitted certificate subject
names, key usages, extended key usages, certificate quality levels, certificate path settings etc.

Refer to the following online admin guide for an explanation of Verification Profile settings:

Step 4 - Configuring XKMS Profile (ascertia.com)

9.3 The XKMS Validation Service API
The XKMS Validation Service API consists of the following classes:

http://www.w3.org/TR/2005/REC-xkms2-20050628/
https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/step4_configuring_xkms_profile.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 103 of 181

 Validate Request – for sending a single certificate validation request

 Validate Result – for receiving the response to the above request

 Compound Request – for sending a multiple certificate validation request

 Compound Result - for receiving the response to the above request

9.4 Validate Request Class

9.4.1 Validate Request Constructor

The XKMS Validate Request Class is used when asking ADSS Server to validate a single X.509
certificate.

The following constructor is used to build the initial Validate Request and specifies a single ‘respond
with’ item that is required in the response, in this case to respond with the actual certificate. Additional
‘respond with’ items can be added with the AddRespondWith method (described below).

var validateRequest = new ValidateRequest(ValidateRequest.RESPONDWITH_X509CERT);

9.4.2 Validate Request Methods

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the Validate Request Class:

Validate Request Method Purpose

AddKeyUsage(string

keyUsage)

Specifies the required key usage for the certificate. Values
can be:

KEYUSAGE_ENCRYPTION

KEYUSAGE_EXCHANGE

KEYUSAGE_SIGNATURE

AddRespondWith(string

respondWith)
Adds the ‘respond with’ item constant into the request.
Whatever the constants sent in request, the corresponding
values will be returned in the response. This method can be
called multiple times if more ‘respond with’ items need to be
set.

The values that can be set are the same as for the constructor:

RESPONDWITH_KEYNAME

RESPONDWITH_KEYVALUE

RESPONDWITH_X509CERT

RESPONDWITH_X509CHAIN

RESPONDWITH_X509CRL

RESPONDWITH_OCSP

RESPONDWITH_SPKI

RESPONDWITH_EIDQUALITY

RESPONDWITH_OCSPNOCACHE

RESPONDWITH_VALIDATIONDETAILS

AddUseKeyWith(string

application, string

identifier)

Specifies a subject identifier and application identifier that
determine a use of the key. The following application values
are defined with an indication of the required identifier type in
brackets:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 104 of 181

USEKEYWITH_PKIX (Id: Certificate Subject Name)

USEKEYWITH_SMIME (Id: SMTP email address of

subject)

USEKEYWITH_TLS_HTTPS (Id: DNS address of http

server)

USEKEYWITH_TLS_SMTP (Id: DNS address of mail

server)

SetKeyInfo(byte[]

certificateToValidate)
Supplies the certificate as an array of bytes.

SetOpaqueClientData(strin

g opaqueClientData)

This is data that is sent in the request and returned in a
successful response. The meaning of opaque is that the data
should be encrypted by the client as it is deemed to be
confidential.

SetOriginatorId(string

originatorId)
Specifies the client Id that will be used to authenticate the
XKMS validate request.

SetProfileId(string

profileId)
Specifies the profile Id that will be used to process this
request.

SetTimeInstant(DateTime

dateTime)
Specifies the time of production of the XKMS request.

9.4.3 Sending the XKMS Validate Request

Once the request message has been constructed and fully populated, it is sent to ADSS Server using
the following method call:

var validateResult = (ValidateResult)validateRequest.Send(string URL);

The URL is that of the XKMS Service e.g. http://machine-name:8777/adss/xkms

The XKMS Service returns a response status and if this indicates success then all the requested
response items are also included.

9.4.4 Example of creating and sending an XKMS Validate Request

9.5 Validate Result Class
In common with the other response classes, XKMS Validate Result inherits the following methods from
the Response and Message classes. There are described in section 3 as well as in the JavaDoc and
Sandcastle class documentation:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 105 of 181

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetRequestID, GetSigningCertificates, GetStatus,

IsSuccessful.

In addition, the following methods are specific to the XKMS Validate Result Class:

Validate Result Method Purpose

GetCertificate() returns

byte[]
Returns the certificate that was validated.

GetCertificateChain()returns

ArrayList
Returns the target certificate chain.

GetCertificateQuality()

returns string
Returns the certificate quality of the issuing CSP.

GetCRLs() returns ArrayList Returns the list of CRLs used to check the revocation
status of the target certificate chain.

GetCspAssurance() returns

string
Returns the CSP assurance level of the issuing CSP.

GetErrorDetail() returns

string
Returns the error detail defined by PEPPOL.

GetErrorReason() returns

string
Returns the error reason defined by PEPPOL.

GetId() returns string Returns the response identifier.

GetIndeterminateReason()

returns ArrayList
Returns the list of indeterminate reasons in the Status
element. These are status aspects that could not be
evaluated or were evaluated but which returned an
indeterminate result.

GetInvalidReason() returns

ArrayList
Returns the list of invalid reasons in the Status element.
These are status aspects that have been evaluated and
found to be Invalid.

GetKeyName() returns string Returns the Subject DN of the target certificate.

GetKeyUsage() returns

ArrayList
Returns the list of key usages that have been matched
in the target certificate.

GetKeyValueExponent() returns

byte[]
Returns the public key exponent of the target
certificate.

GetKeyValueModulus() returns

byte[]
Returns the modulus of the public key of the target
certificate.

GetOcspCacheInterval() returns

int
Returns the life time (in minutes) of the OCSP cache.

GetOcspResponses() returns

ArrayList
Returns the list of OCSP responses used to check the
revocation status of the target certificate chain.

GetOpaqueClientData() returns

string
Returns the opaque client data supplied in the request.

GetResponderConfigurationVersi

on()
Returns the responder configuration version.

GetResponderName() returns

string
Returns the responder name.

GetResponderURI() returns

string
Returns the responder URI.

GetResultMajor() returns

string
Returns the MajorResult of the XKMS request.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 106 of 181

As only synchronous processing is currently supported,
the MajorResult will be one of the ‘Final’ results.

These are:

Success:

The operation succeeded.

VersionMismatch:

The service does not support the

protocol version sent in the request.

Sender:

An error occurred that was due to the

message sent by the sender.

Receiver:

An error occurred at the receiver.

GetResultMinor() returns

string
Returns the MinorResult of the XKMS request.

These are the possible values:

- NoMatch

- TooManyResponses

- Incomplete

- Failure

- Refused

- NoAuthentication

- MessageNotSupported

- UnknownResponseID

- OptionalElementNotSupported

- ProofOfPossessionRequired

- TimeInstantNotSupported

- TimeInstantOutOfRange.

GetRevocationReason() returns

string
Returns the revocation reason.

GetRevocationTime() returns

DateTime
Returns the revocation time.

GetService() returns string Returns the URL of the XKMS service.

GetSPKI() returns byte[] Returns the hash of the target certificate public key.

GetUseKeyWith() returns

Hashtable
Returns the list of extended key usages matched in the
validated certificate.

GetValidationModel() returns

string
Returns the validation model. (Only PKIX is supported
currently).

GetValidationScheme() returns

string
Returns the validation scheme i.e. either CRL or OCSP.

GetValidationTime() returns

DateTime
Returns the time for which target certificate was
validated.

GetValidReason() returns

ArrayList
Returns the list of valid reasons in the Status element.
These are status aspects that have been evaluated and
found to be valid.

IsOcspNoCache() returns bool Returns a flag stating that the OSCP response is not
taken from the cache.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 107 of 181

9.6 Compound Request Class

9.6.1 Compound Request Constructor

The XKMS Compound Request Class is used when asking ADSS Server to validate multiple X.509
certificates.

The following constructor is used to build the initial Compound Request and specifies a list of pre-built
Validation Requests.

var compoundRequest = new CompoundRequest(compoundRequests);

9.6.2 Compound Request Methods

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following method is specific to the Compound Request Class:

Compound Request Method Purpose

AddRequest(request) Adds a validate request to an existing compound request.

9.6.3 Sending the XKMS Compound Request

Once the request message has been constructed and fully populated, it is sent to ADSS Server using
the following method call:

var compoundResult = (CompoundResult)compoundRequest.Send(URL);

The URL is that of the XKMS Service e.g. http://machine-name:8777/adss/xkms

The returned XKMS Service returns a response status and if this indicates success then all the
requested response items are also included.

9.7 Compound Result Class
The XKMS Compound Result class inherits the following methods from the Response and Message
classes. There are described in section 3 as well as in the JavaDoc and Sandcastle class
documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetRequestID, GetSigningCertificates, GetStatus,

IsSuccessful.

In addition, the following methods are specific to the XKMS Validate Result Class:

Compound Result Method Purpose

GetId() returns string Returns the response identifier.

GetResultMajor() returns

string
Returns the MajorResult of the XKMS request.

As only synchronous processing is currently supported,
the MajorResult will be one of the ‘Final’ results.

These are:

Success

The operation succeeded.

VersionMismatch:

The service does not support the

protocol version sent in the request.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 108 of 181

Sender:

An error occurred that was due to the

message sent by the sender.

Receiver:

An error occurred at the receiver.

GetResultMinor() returns

string
Returns the MinorResult of the XKMS request.

These are the possible values

- NoMatch

- TooManyResponses

- Incomplete

- Failure

- Refused

- NoAuthentication

- MessageNotSupported

- UnknownResponseID

- OptionalElementNotSupported

- ProofOfPossessionRequired

- TimeInstantNotSupported

- TimeInstantOutOfRange.

GetResults() returns

List<ValidateRequest>
Returns the result of each XKMS validate request.

9.8 XKMS Service Sample Code
Java and .Net sample code is provided as part of the ADSS Client SDK and can be used to make XKMS
Service requests and to process the responses.

The Java API provides the required classes under the package:

com.ascertia.adss.client.api.xkms

The .Net API provides the required classes under the namespace:

Com.Ascertia.ADSS.Client.API.XKMS

9.8.1 Java API Sample Code

The following sample programs demonstrate how the Java API can be used to send an XKMS Service
request and to process the response:

samples/src/com/ascertia/adss/client/samples/xkms/CreateValidateRequest.j

ava

samples/src/com/ascertia/adss/client/samples/xkms/CreateCompoundValidateR

equest.java

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/XkmsValidate.bat

samples/bin/XkmsCompoundValidate.bat

9.8.2 .Net API Sample Code

The following sample programs demonstrate how the .Net API can be used to send an XKMS Service
request and to process the response:

samples/src/Com/Ascertia/ADSS/Client/Samples/XKMS/CreateValidateRequest.c

s

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 109 of 181

samples/src/Com/Ascertia/ADSS/Client/Samples/XKMS/CreateCompoundValidateR

equest.cs

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/XkmsValidate.bat

samples/bin/XkmsCompoundValidate.bat

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 110 of 181

9.9 ADSS XKMS Service Supported Algorithms
The following is a list of signing/hashing algorithms and key lengths that ADSS XKMS Service supports:

ADSS Service Signature Algorithm Hashing Algorithm Algorithm / Key Sizes

XKMS SHA1WithRSAEncryption
SHA224WithRSAEncryption
SHA256WithRSAEncryption
SHA384WithRSAEncryption
SHA512WithRSAEncryption
RipeMD128WithRSAEncryption
RipeMD160WithRSAEncryption
SHA1withECDSA
SHA224withECDSA
SHA256withECDSA
SHA384withECDSA
SHA512withECDSA

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512
RipeMD128
RipeMD160

RSA:
1024, 2048, 3072, 4096

ECDSA:
192,224,256,384,521

9.10 Error Codes
ADSS XKMS Service returns the following error codes in case of any failure:

Error Code Error Message

46001 XKMS service not enabled in license.

46002 XKMS service license has expired.

46003 XKMS service is stopped.

46004 Signed request required.

46005 Request invalid and not according to schema.

46006 Signature verification failed.

46008 Failed to sign XKMS response.

46009 Certificate chain invalid in request.

46010 An internal error occurred while processing the request - see the
XKMS service debug logs for details.

46011 TLS client certificate is revoked.

46012 TLS client certificate has unknown status.

46013 TLS client certificate has expired.

46014 Request signer certificate has unknown status.

46015 Request signer certificate is revoked.

46016 Request signer certificate has expired.

46017 XKMS request must use TLS client authentication.

46018 TLS certificate trust building failed.

46019 Certificate subject name is denied within the access control list.

46020 Certificate subject name is not in the include list within the access
control list.

46021 IP address is not within the include list in the access control list.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 111 of 181

46022 IP address is excluded within the access control list.

46023 Signed request required.

46024 Failed to build trust for request signer certificate

46025 XKMS service not allowed.

46026 XKMS profile is not allowed to the client.

46027 Originator ID not registered for this TLS client certificate.

46028 Originator ID not registered for this request signing certificate.

46029 Required elements are missing.

46030 Quality level not acceptable.

46031 Originator ID not found.

46032 XKMS profile is inactive.

46033 Validation at historic time is not configured.

46034 Wrong certificate format.

46035 Wrong time instance.

46036 XKMS service not enabled in system.

46037 XKMS profile does not exist or marked inactive.

46038 Default profile not configured and neither found in request.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 112 of 181

10 ADSS SCVP Service
The IETF RFC 5055 Server-Based Certificate Validation Protocol (SCVP) is a relatively new, flexible,
certificate validation protocol that is primarily intended to be used with large and complex PKI
deployments (e.g. national PKIs). It can however also be used within smaller digital certificate trust
schemes.

SCVP allows a client application to delegate all certificate validation tasks to the server. These include
certificate path construction and path validation. The benefits of this are that simple clients and
especially mobile devices can understand digital certificate trust. Centralised validation policies can be
created and managed and thus client-side complexity, processing overhead and development effort
can be substantially reduced.

The ADSS SCVP Service follows the RFC 5055 specifications and supports two modes of operation:

 Delegated Path Discovery (DPD) and

 Delegated Path Validation (DPV)

With Delegated Path Discovery (DPD) the SCVP Service is asked to construct a valid certificate path
from the supplied signing certificate back to a trusted root certificate but not to perform any validation.
Validation is then performed on the client side.

In Delegated Path Validation (DPV) the SCVP Service is asked to construct the path as well as perform
the certificate validation. It confirms that the public key belongs to the identity named in the signing
certificate and that it can be used for the intended purpose.

ADSS SCVP Service also supports the ValPolRequest specified in RFC 5055. An SCVP client uses the
ValPolRequest item to request information about an SCVP server's policies and configuration
information, including the list of validation policies supported by the SCVP server. In response to a
ValPolRequest, the ADSS SCVP server provides a ValPolResponse. The ValPolResponse may not be
unique to any ValPolRequest, so may be reused by the server in response to multiple ValPolRequests.

Note that an SCVP Client can also be another SCVP Server. This is the case in SCVP relaying when
one SCVP Server cannot answer and refers to another authoritative SCVP Server.

10.1 Simplified Use of SCVP
A simple use case of SCVP is where the Validation Policy is fully defined at the server. The standard
allows complex request parameters, but in many cases simple clients just wish the server to follow the
defined policy and give a simple trustworthy answer.

ADSS Server SCVP Validation Policies cover all requirements in the SCVP standard, including items
such as establishing trust anchors, specifying certificate policies, defining permitted certificate subject
names and key usages etc.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 113 of 181

The definition of an SCVP Validation Policy is covered in detail in the ADSS Server Admin Guide an
on-line version is provided here:

Configuring the SCVP Service (ascertia.com)

The ADSS Client SDK includes a pre-built SCVP client which can be used by either a Java or a .Net
application. In a simple SCVP case, one where the SCVP Client is only interested in the status of a
single certificate, only a few lines of code are required as illustrated below (error and other response
processing code has been removed for clarity). Each of these .Net calls and the significance of the
‘OID’ values are described in detail later in this section.

Following sample can be used to get server policy configurations. It creates a validation policy request
and send it to the server which in reponse send the SCVP server policy configuration supported by
server.

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/configuring_the_scvp_service.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 114 of 181

Following sample is used to call the SCVP rest API to get all the SCVP policies configuration
information.

10.2 The SCVP Client API
The SCVP Client API (part of ADSS Client SDK) consists of three classes:

 The SCVP Request Class (ScvpRequest) which is used for creating, populating and sending
the request

 The SCVP Response Class (ScvpResponse) which is used to retrieve information from the
response message

 Certificate Reply Class (CertReply) which is used to retrieve validation information for each
requested certificate.

 The SCVP Validation Policy Request Class (ScvpValidationPolicyRequest) which is used for
creating, populating and sending the ValPolRequest.

 The SCVP Validation Policy Response Class (ScvpValidationPolicyResponse) which is used
to retrieve policy information from the response message.

 The Get Policy Info Request Class (ASC_GetPolicyInfoRequest) which is used for sending the
request to SCVP rest API to get policy information.

 The Get Policy Info Response Class (ASC_GetPolicyInfoResponse) which is used to retrieve
policy information from the response message.

10.3 SCVP Request Class
The SCVP Request Class is used to create SCVP Requests for sending to the ADSS SCVP Service.

The following constructor is used to build an initial SCVP request message. This specifies a target
certificate for validation plus a Validation Policy OID:

var scvpRequest = new ScvpRequest(x509Certificate,validationPolicyOid);

Validation Policy OIDs must match those defined within Validation Policies at ADSS Server. The special
policy OID “1.3.6.1.5.5.7.19.1" is the default policy but other policy OIDs can be specified.

To add additional certificates into the request the following method is used:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 115 of 181

scvpRequest.AddCertToValidate(anotherX509Certificate);

In the following sections the various methods of the SCVP Request Class are described. These are in
addition to the methods inherited from the generic Request and Message classes described in section
3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send (overridden), SetProxy, SetRequestRetries,

SetSigningCredentials, SetSslClientCredentials (overridden), SetTimeout,

SetVerifyResponse.

10.3.1 Specifying Delegated Path Discovery or Validation

To specify whether Delegated Path Discovery (DPD) or Delegated Path Validation (DPV) is required
the following method is used, supplying an appropriate OID parameter in the call:

scvpRequest.AddCertChecks(string);

The following Delegated Path OIDs are currently supported and have the following meaning:

For Delegated Path Discovery (DPD) use:

"1.3.6.1.5.5.7.17.1” (Build path to a defined trust anchor)

For Delegated Path Validation (DPV) use:

"1.3.6.1.5.5.7.17.2” (Build validated path to a defined trust anchor)

"1.3.6.1.5.5.7.17.3” (Build validated path to trust anchor and check

revocation)

10.3.2 Specifying the information the client ‘wants back’ about each certificate

The SCVP Client can specify what information it requires back about each certificate. It does this by
making one or more calls to the following method:

scvpRequest.AddWantBack(string Oid);

These are the ‘Want Back’ OIDs currently supported (with pre-defined OID strings in brackets):

SCVP ‘Want Back OID Information Required in Response

"1.3.6.1.5.5.7.18.1"

(BEST_CERT_PATH)
Return the certification path for the certificate including
the certificate that was validated.

"1.3.6.1.5.5.7.18.2"

(REVOCATION_INFO)
Return proof of revocation status for each certificate in
the certification path.

"1.3.6.1.5.5.7.18.4"

(PUBLIC_KEY_INFO)
Return the public key from the certificate that was the
subject of the request.

"1.3.6.1.5.5.7.18.10" (CERT) Return the public key certificate that was the subject of
the request.

"1.3.6.1.5.5.7.18.12"

(ALL_CERT_PATHS)
Return a set of certification paths for the certificate that
was the subject of the request.

"1.3.6.1.5.5.7.18.13"

(EE_REVOCATION_INFO)
Return proof of revocation status for the end entity
certificate in the certification path.

"1.3.6.1.5.5.7.18.14"

(CA_REVOCATION_INFO)
Return proof of revocation status for each CA certificate
in the certification path.

For each specified ‘want back’ the requested information will be returned in the SCVP response.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 116 of 181

10.3.3 Including Other SCVP Request Items

By using the following SCVP Request methods, a number of additional response items may be
requested from the SCVP Service or additional information supplied to the service:

SCVP Request Method Purpose

SetFullRequestInResponse(bool) Determines whether full request details are returned in
response.

SetResponseValidationPolByRef

(bool)
Determines whether full policy details are returned in
the response.

SetProtectResponse(bool) Determines whether the response is protected (e.g. by
signing).

SetCachedResponse(bool) Specifies whether the SCVP Client will accept cached
responses.

SetNonce (byte[]) Sets a ‘nonce’ value for the request. This requires the
SCVP Server to send a ‘fresh’, non-cached, response.

SetRequestorName(string,

string)
Specifies the requestor name (as a key/value pair) to
be returned by the SCVP Server in the response.

AddRequestorRef(string,

string)
Specifies a unique reference (as a key/value pair)
within an SCVP Server network for the requesting
SCVP Server. This is used to detect looping between
SCVP Servers when SCVP Relaying is used.

SetResponderName(string,

string)
Specifies (as a key/value pair) the identity of the SCVP
Server that the client expects will sign the response.

SetValidationTime(DateTime) Specifies the date and time for which the certificate
validation is required.

SetRequestorText(string) Specifies text for inclusion in the response, e.g. this
could be text that describes the reason for the request.

AddIntermediateCertificate

(X509Certificate)
Supplies certificates which the SCVP Server may use
when forming a certification path.

SetSignatureAlgorithm(string) Specifies the signature algorithm to be used by the
SCVP Server to sign the response message.

SetHashAlgorithm (string) Specifies the hash algorithm to be used by the SCVP
Server for its response.

SetSigningCredentials(string,

string)
Provides the path and password for a ‘pfx’ file to be
used for signing SCVP Requests – overrides the
method provided in the generic request class.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 117 of 181

10.3.4 Validation Policy Overrides (PKIX Certificate Validation Settings)

If permitted by the Validation Policy defined for the SCVP Service, the following policy attributes may
be overridden or added to by calling the associated ‘Set’ or ‘Add’ request methods:

SCVP Request Method Policy being overridden

SetBasicValidationAlgorithmOID

(string)
Specifies a different ‘Base Validation Algorithm’ to be
used for certificate path validation.

SetInhibitPolicyMapping(bool) Determines whether policy mapping is allowed during
certificate path validation.

SetRequireExplicitPolicy(bool) Determines whether there must be at least one valid
policy in the certificate policies extension.

SetInhibitAnyPolicy(bool) Determines whether the anyPolicy OID is processed or
ignored when evaluating certificate policy.

AddUserPolicySet(string) Adds to a list of certificate policy identifiers that the
SCVP Service must use when constructing and
validating a certificate path.

SetNameValidationAlgorithmOID

(string)

Specifies one or more validation algorithm OIDs which
specify subject name matching rules for the end entity
certificate.

AddKeyUsage(string) Adds a required key usage.

AddExtendedKeyUsage(string) Adds an allowed Extended Key Usage

AddSpecifiedKeyUsage(string) Adds a required Extended Key Usage

AddTrustAnchor(string) Adds a Trust Anchor which can be used for certificate
path validation.

10.3.5 Sending the SCVP Request

Once the request message has been constructed and fully populated, it is sent to ADSS Server using
the following method call:

var scvpResponse = (ScvpResponse)scvpRequest.Send(URL);

The URL is that of the SCVP Service e.g. http://machine-name:8777/adss/scvp

The returned SCVP Response contains a response status and if this indicates success then all the
requested response items are also included.

10.4 SCVP Response Class

10.4.1 SCVP Response Status Processing

The Response Status gives status information to the SCVP client about its request. This consists of a
numerical error code and an optional human readable error message (currently this latter item is not
supported).

The Response Status Code can be retrieved from the response with the following method:

int status = scvpResponse.GetStatusCode();

Various status codes are defined in the SCVP standard with values 0-9 reserved for successful
responses (meaning that the server has processed them successfully, not that the validation results are
positive). Codes 10 and above are reserved for error responses.

To simplify response processing, the following SCVP Response Status Code constants are defined:

http://localhost:8777/adss/scvp

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 118 of 181

Success Codes:

OKAY (status code = 0)

SKIP_UNRECOGNIZED_ITEMS (status code = 1)

(Meaning that there were some non-critical extensions, however processing

was able to continue ignoring them)

Error Codes:

TOO_BUSY (status code = 10)

INVALID_REQUEST (status code = 11)

INTERNAL_ERROR (status code = 12)

BAD_STRUCTURE (status code = 20)

UNSUPPORTED_VERSION (status code = 21)

ABORT_UNRECOGNISED_ITEMS (status code = 22)

UNRECOGNIZED_SIG_KEY (status code = 23)

BAD_SIGNATUREORMAC (status code = 24)

UNABLE_TO_DECODE (status code = 25)

NOT_AUTHORIZED (status code = 26)

UNSUPPORTED_CHECKS (status code = 27)

UNSUPPORTED_WANT_BACKS (status code = 28)

UNSUPPORTED_SIGNATUREORMAC (status code = 29)

INVALID_SIGNATUREORMAC (status code = 30)

PROTECTED_RESPONSE_UNSUPPORTED (status code = 31)

UNRECOGNIZED_RESPONDER_NAME (status code = 32)

RELAYING_LOOP (status code = 40)

UNRECOGNIZED_VAL_POL (status code = 50)

UNRECOGNIZED_VAL_ALG (status code = 51)

FULL_REQUEST_IN_RESPONSE_UNSUPPORTED (status code = 52)

FULL_POL_RESPONSE_UNSUPPORTED (status code = 53)

INHIBIT_POLICY_MAPPING_UNSUPPORTED (status code = 54)

REQUIRE_EXPLICIT_POLICY_UNSUPPORTED (status code = 55)

INHIBIT_ANY_POLICY_UNSUPPORTED (status code = 56)

VALIDATION_TIME_UNSUPPORTED (status code = 57)

UNRECOGNIZED_CRIT_QUERY_EXT (status code = 63)

UNRECOGNIZED_CRIT_REQUEST_EXT (status code = 64)

10.4.2 SCVP Response Items

Assuming the Response Status Code is one of the success responses then the following methods
retrieve relevant information from the SCVP Response.

SCVP Response Method Purpose

GetBasicValidationAlgorithmOID

() returns string
Returns the OID for the Basic Validation Algorithm

GetExtendedKeyUsages() returns

List<string>
Returns a list of the Extended Key Usages.

GetFullRequest() returns

byte[]
Returns a single data structure suitable for archiving
the transaction.

GetKeyUsages() returns

List<string>
Returns a list of the Key Usages.

GetNameValidationAlgorithmOID(

) returns string
Returns the OID for the Name Validation Algorithm.

GetNonce() returns byte[] Returns the ‘nonce’ value for comparison with the one
sent in the request.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 119 of 181

GetProducedAt() returns

DateTime
Returns the date and time when the response was
produced.

GetReplyObjects() returns

List<CertReply>
Returns the list of Certificate Reply objects. These
contain validation information for each of the
certificates in the request. The first ‘CertReply’ relates
to the first certificate in the request, the second to the
second, and so on. The CertReply class is covered in
the next section.

GetRequestHash() returns

byte[]
Returns the hash of the request which allows the client
to match the response with a request message.

GetRequestorNames() returns

Hashtable
Returns the requestor identities set by the client in the
request.

GetRequestorRef() returns

Hashtable
Returns the requestor reference information for the
case where SCVP relay is used.

GetRequestorText() returns

string
Returns the ‘Requestor Text’ sent by the client in the
request.

GetResponseValidationPolicy()

returns string
Returns a reference to the validation policy used to
process the request.

GetServerConfigurationId()

returns int
Returns the Server Configuration ID.

GetSpecifiedKeyUsages()

returns List<string>
Returns the list of specified Extended Key Usages.

GetTrustAnchors() returns

X509Certificate[]
Returns the list of trust anchors.

GetUserPolicySet() returns

List<string>
Returns the list of certificate policy identifiers used by
the SCVP Service when constructing and validating a
certificate path.

GetValidationNames() returns

List<string>
Returns the list of validation algorithm OIDs which were
used to match subject names in the validated end entity
certificates.

GetVersion() returns int Returns the version of the SCVP protocol used.

In addition to the above, the SCVP Response class also inherits the following methods from the generic
Response and Message classes. These are described in section 3 as well as in the JavaDoc and
Sandcastle class documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetSigningCertificates, GetStatus, IsSuccessful.

10.4.3 Cert Reply Class

The Certificate Reply Class provides methods for accessing validation information for each certificate
sent in the SCVP request. The list of CertReply objects is retrieved from the SCVP Response as
described in the previous section.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 120 of 181

10.4.4 Accessing Certificate Validation Information

For each validated certificate, access is provided to the certificate validation information using the
following methods:

Cert Reply Method Purpose

GetReplyCheckStatus() returns

int
Return the status for the DPD or DPV certificate check.
The value of the reply depends upon the requested
check.

For DPD, the values are:

0: Built a path;

1: Could not build a path

For DPV without revocation checking, they are:

0: Valid;

1: Not valid

For DPV with revocation checking, they are:

0: Valid;

1: Not valid;

2: Revocation off-line;

3: Revocation unavailable;

4: No known source for revocation information

GetReplyStatus() returns int Returns the overall validation status for the requested
certificate.

The following status codes are defined:

SUCCESS (status code = 0)

MALFORMED_PKC (status code = 1)

MALFORMED_AC (status code = 2)

UNAVAILABLE_VALIDATION_TIME (status

code = 3)

REFERENCE_CERT_HASH_FAIL (status code = 4)

CERT_PATH_CONSTRUCT_FAIL (status code = 5)

CERT_PATH_NOT_VALID (status code = 6)

CERT_PATH_NOT_VALID_NOW (status code = 7)

WANT_BACK_UNSATISFIED (status code = 8)

GetAllCertPaths() returns

List<X509Certificate>
Returns a set of certification paths for the validated
certificate.

GetBestCertPath() returns

List<X509Certificate>
Returns the certification path for the certificate including
the certificate that was validated.

GetCAsRevocationInfo() returns

List<Hashtable>
Returns the proof of revocation status for each CA
certificate in the certification path.

GetCertificate() returns

X509Certificate
Returns the validated certificate from the response.

GetEndEntityRevocationInfo()

returns List<Hashtable>
Returns the proof of revocation status for the end entity
certificate in the certification path.

GetNextUpdate() returns

DataTime
Returns the date and time when the SCVP Server
expects a refresh of the certificate validity information.

GetPublicKeyInfo() returns

byte[]
Returns the public key from the end entity certificate.

GetReplyCheckOID() returns

string
Returns the OID that identifies which type of certificate
check was requested i.e. DPD or DPV (with or without
revocation checking).

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 121 of 181

GetReplyValidationTime()

returns DateTime
Returns the date and time for which the validation
information is correct.

GetRevocationInfo() returns

List<Hashtable>
Returns revocation information for the certificate.

GetValidationErrors() returns

List<string>
Returns the validation errors for the certificate as a set
of OIDs. These OIDs identify basic validation errors
and name validation errors.

GetWantBacks() returns

List<string>
Returns a list of the ‘want back’ OIDs sent in the
request.

10.5 SCVP Validation Policy Request Class
The SCVP Validation Policy Request Class is used to create SCVP Requests for sending to the ADSS
SCVP Service.

The following constructor is used to build an initial SCVP request message.

ScvpValidationPolicyRequest obj_scvpRequest= new ScvpValidationPolicyRequest();

If validation policy request have requestNonce then a fresh response is composed including this
NONCE value from request and if request not including requestNonce then cached response is
returned.

obj_scvpRequest.setNonce(“abc”.getBytes());

10.5.1 Sending the SCVP Validation Policy Request

Once the request message has been constructed and fully populated, it is sent to ADSS Server using
the following method call:

var obj_scvpResponse = (ScvpValidationPolicyResponse) obj_scvpRequest.Send(URL);

The URL is that of the SCVP Service e.g. http://machine-name:8777/adss/scvp

The returned SCVP Response contains a response status and if this indicates success then all the
requested response items are also included.

10.6 SCVP Validation Policy Response Class
The Response Status gives status information to the SCVP client about its request. If the response is
successful it will return with status 200.

obj_scvpResponse.IsSuccessfull() {

 obj_scvpesponse.GetStatus();

}

10.6.1 SCVP Validation Response Items

Assuming the Response Status Code is one of the success responses then the following methods
retrieve relevant information from the SCVP Valiadtion Policy Response.

http://localhost:8777/adss/scvp

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 122 of 181

SCVP Response Method Purpose

GetBasicValidationAlgorithmOID

() returns string
Returns the OID for the Basic Validation Algorithm

GetExtendedKeyUsages() returns

List<string>
Returns a list of the Extended Key Usages.

GetKeyUsages() returns

List<string>
Returns a list of the Key Usages.

GetNameValidationAlgorithmOID(

) returns string
Returns the OID for the Name Validation Algorithm.

GetNonce() returns byte[] Returns the ‘nonce’ value for comparison with the one
sent in the request.

GetThisUpdate() returns

DateTime
Returns the date and time when the response was
produced.

GetNextUpdate() returns

DateTime
Returns the date and time when the new response will
be computed next during cache process.

GetDefaultValidationPolicy()

returns string
Returns a reference to the validation policy used by
default by the server.

GetServerConfigurationId()

returns int
Returns the Server Configuration ID.

GetSpecifiedKeyUsages()

returns List<string>
Returns the list of specified Extended Key Usages.

GetTrustAnchors() returns

X509Certificate[]
Returns the list of trust anchors.

GetUserPolicySet() returns

List<string>
Returns the list of certificate policy identifiers used by
the SCVP Service when constructing and validating a
certificate path.

GetValidationNames() returns

List<string>
Returns the list of validation algorithm OIDs which were
used to match subject names in the validated end entity
certificates.

GetVersion() returns int Returns the version of the SCVP protocol used.

GetSignatureGeneration()

returns List<String>
Returns the Signature generation algorithms supported
by the server.

GetSignatureVerification()

returns List<String>
Returns the Signature verification algorithms supported
by the server.

GetHashAlgorithms() returns

List<String>
Returns the hash algorithms supported by the server.

GetResponseType()returns int Returns the response type supported by the server i.e.
2 (cached-and-non-cahed)

GetMaxCVRequestVersion()

returns int
Returns the max CV request version supported y the
server.

GetMaxVPRequestVersion()

returns int
Returns the max VP request version supported y the
server.

GetSupportedChecks() returns

List<String
Returns the cert checks list supported by the server

GetWantBacks() Returns the want backs supported by the server

GetValidationAlgs() returns

List<String>
Returns the validation algorithms supported by the
server.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 123 of 181

GetAuthPolicies() returns

List<String>
Returns the auth policies supported by the server.

GetClockSkew() returns int Resturn the clock skew interval configured at server,

GetInhibitPolicyMapping()

retutns boolean

Returns the Inhibit policy mapping flag configured in
default validation policy

GetRequireExplicitPolicy()

retutns boolean
Returns the Require explicit policy flag configured in
default validation policy

GetInhibitAnyPolicy() retutns

boolean
Returns the Inhibit any policy flag configured in default
validation policy

In addition to the above, the SCVP Response class also inherits the following methods from the generic
Response and Message classes. These are described in section 3 as well as in the JavaDoc and
Sandcastle class documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetSigningCertificates, GetStatus, IsSuccessful.

10.7 SCVP Get Policy Info Request Class
The Get Policy Info Request Class is used to create SCVP Request for sending to the ADSS SCVP
Service.

The following constructor is used to build an initial SCVP request message.

ASC_GetPolicyInfoRequest obj_scvpRequest = new ASC_GetPolicyInfoRequest

(“policyInfo”, “1.3.6.1.5.5.7.19.1”);

Policy OID is optinal here. If not specified the ADSS SCVP Service will return all the policies information.

10.7.1 Sending the SCVP Get Policy Info Request

Once the request message has been constructed and fully populated, it is sent to ADSS Server using
the following method call:

var obj_scvpResponse = (ASC_GetPolicyInfoResponse) obj_scvpRequest.Send(URL);

The URL is that of the SCVP Service e.g.

http://machine-name:8777/adss/service/scvp/v1/policyInfo

The returned SCVP Response contains a response status and if this indicates success then all the
requested response items are also included.

10.8 SCVP Get Policy Info Response Class
The Response Status gives status information to the SCVP client about its request. If the response is
successful it will return with status 200.

obj_scvpResponse.IsSuccessfull() {

 obj_scvpesponse.GetStatus();

}

http://machine-name:8777/adss/service/scvp/v1/policyInfp

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 124 of 181

10.8.1 Get Policy Infor Response Items

Assuming the Response Status Code is one of the success responses then the following methods
retrieve relevant information from the Get Policy Info Response.

SCVP Response Method Purpose

GetDataVO () returns

ASC_PolicyInfoResponseVO
Returns ASC_PolicyInfoResponseVO object
containing the policy response values.

In addition to the above, the SCVP Response class also inherits the following methods from the generic
Response and Message classes. These are described in section 3 as well as in the JavaDoc and
Sandcastle class documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetSigningCertificates, GetStatus, IsSuccessful.

10.9 SCVP Sample Code
Java and .Net sample code is provided as part of the ADSS Client SDK and this can be used to make
SCVP Service requests and to process the SCVP Service response.

The Java API provides the required classes under the package:

com.ascertia.adss.client.api.scvp

The .Net API provides the required classes under the namespace:

Com.Ascertia.ADSS.Client.API.SCVP.

10.9.1 SCVP Service, Java API Sample Code

The following sample programs demonstrate how the Java API can be used to send a SCVP request
and to process the response:

samples/src/com/ascertia/adss/client/samples/scvp/CreateCertValidateReque

st.java

samples/src/com/ascertia/adss/client/samples/scvp/CreateValidationPolicyR

equest.java

A precompiled and ready to run version of the above sample program can be found at:

samples/bin/ScvpCertValidate.bat

samples/bin/ScvpValidationPolicy.bat

10.9.2 SCVP Service .Net API Sample Code

The following sample programs demonstrate how the .Net API can be used to send a SCVP request
and process the response:

samples/src/Com/Ascertia/ADSS/Client/Samples/SCVP/CreateCertValidateReque

st.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/SCVP/CreateValidationPolicyR

equest.cs

A precompiled and ready to run version of the above sample program can be found at:

samples/bin/ScvpCertValidate.bat

samples/bin/ScvpValidationPolicy.bat

10.10 ADSS SCVP Service Supported Algorithms
The following is a list of signing/hashing algorithms and key lengths that ADSS SCVP Service supports:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 125 of 181

ADSS Service Signature Algorithm Hashing Algorithm Algorithm / Key Sizes

SCVP SHA1WithRSAEncryption
SHA224WithRSAEncryption
SHA256WithRSAEncryption
SHA384WithRSAEncryption
SHA512WithRSAEncryption
RipeMD128WithRSAEncryption
RipeMD160WithRSAEncryption
SHA1withECDSA
SHA224withECDSA
SHA256withECDSA
SHA384withECDSA
SHA512withECDSA

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512
RipeMD128
RipeMD160

RSA:
1024, 2048, 3072, 4096

ECDSA:
192,224,256,384,521

10.11 Error Codes
ADSS SCVP Service returns the following error codes in case of any failure:

Error Code Error Message

47001 SCVP service not enabled in license.

47002 SCVP service license has expired.

47003 SCVP service is stopped.

47004 Signed request required.

47005 An internal error occurred while processing the request - see the
SCVP service debug logs for details.

47006 SCVP request signature verification failed.

47007 Failed to authenticate SCVP request.

47008 SCVP version not supported.

47009 SCVP request contains unsupported request items.

47010 SCVP request references an unknown validation policy.

47011 SCVP server does not support sending validation policy value.

47012 SCVP response signing certificate not found.

47013 SCVP server does not have certificate matching the requested
responder name.

47014 Invalid SCVP request.

47015 Certificate validation failed.

47016 Certificate validation using SCVP request validation time is not
enabled.

47017 An internal error occurred while processing the request - see the
SCVP service debug logs for details

47018 TLS client certificate is revoked.

47019 TLS client certificate has an unknown status.

47020 TLS client certificate has expired.

47021 Request signer certificate has unknown status.

47022 Request signer certificate is revoked.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 126 of 181

47023 Request signer certificate has expired.

47024 SCVP request must use TLS client authentication.

47025 TLS certificate trust building failed.

47026 Certificate subject name is excluded within the access control list.

47027 Certificate subject name is not included within the access control
list.

47028 IP address is not include within the access control list.

47029 IP address is excluded within the access control list.

47030 The request must be signed.

47031 Request signer certificate trust building failed.

47032 Request signer certificate subject name is excluded within the
access control list.

47033 Request signer certificate subject name is not included within the
access control list.

47034 Failed to authenticate SCVP request, required extended key usage
OID does not exist in request signing certificate.

47035 Failed to authenticate SCVP request, required key usage OID does
not exist in request signing certificate.

47036 SCVP service not enabled in system.

47037 SCVP request references an inactive validation policy.

47038 SCVP request contains unknown cert check.

47039 SCVP response signing certificate revoked.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 127 of 181

11 ADSS LTANS Service

11.1 LTANS Service
The ADSS LTANS Service provides long-term archiving and notary services that follow the draft IETF
LTANS standard and IETF XML Evidence Record Syntax (XMLERS) standard. The service generates
evidence records (XMLERS data) for the requesting client application which would typically be a
document or record management system.

To utilise the ADSS LTANS Service, the client business application sends an Archive Request to the
ADSS LTANS Service containing the data to be archived (e.g. a document, data, a signed transaction
etc.). The service creates a secure archive object for the data, using the configured Time Stamp
Authority (TSA), and in compliance with the IETF XML Evidence Record Syntax (XMLERS)
specification.

The communication with the ADSS LTANS Service is conducted over the IETF Long Term Archive
Protocol (LTAP) or HTTP Protocol as illustrated below:

Note ADSS LTANS Service can either store the archive object internally in its database or return it to
the client application for local storage (e.g. the archive object may be stored in the Document
Management System).

If the ADSS LTANS Service is responsible for storing the archive object then the business application
can at a later date export the archive object out of the archive.

ADSS LTANS Service implements the LTAP interface protocol operations (archive, export, delete,
verify, status and ‘listids’) to provide an industry way to securely store, retrieve and verify the documents
and other important data objects for a longer period. Thus the client business application may ask the
ADSS LTANS Service to:

 Verify or delete a particular archive object

 Request status for a particular archive object and

 List the archive objects based upon specific filter criteria.

ADSS LTANS service also supports Renew Evidence operation using HTTP Interface only to renew
evidence record.

11.2 LTANS Service Profiles
The ADSS LTANS Service requires that LTANS Profiles are defined for the ADSS LTANS Service.
These specify the policy for the archive e.g. the archive lifetime, what happens at the end of this period,
whether archive objects need to have their evidence records periodically refreshed, and which
Timestamp Authorities to use for time-stamping the archive objects

Refer to the following online admin guide for a full explanation of LTANS Profile settings:

Configuring the LTANS Service (ascertia.com)

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/configuring_the_ltans_service.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 128 of 181

11.3 The LTANS Service API
In order to simplify the use of the LTAP protocol an LTANS Service API is provided as part of the ADSS
Client SDK.

The API consists of two classes:

 Archiving Request

 Archiving Response

11.4 Archiving Request Class

11.4.1 Archiving Request Constructor

The Archiving Request Class has a single constructor with three parameters: clientID,

serviceType, serviceID.

The serviceType can take one of the following values, depending upon the service required:

ArchivingRequest.SERVICE_TYPE_ARCHIVE

ArchivingRequest.SERVICE_TYPE_DELETE

ArchivingRequest.SERVICE_TYPE_EXPORT

ArchivingRequest.SERVICE_TYPE_LISTIDS

ArchivingRequest.SERVICE_TYPE_STATUS

ArchivingRequest.SERVICE_TYPE_VERIFY

ArchivingRequest.SERVICE_TYPE_RENEW

The serviceID is a unique identifier for the service.

var archivingRequest = new ArchivingRequest(clientID, serviceType,

serviceID);

11.4.2 Archiving Request Methods

The Archiving Request Class inherits the following methods from the generic Request and Message
classes. These are described in section 3 as well as in the JavaDoc and Sandcastle class
documentation:

ToString, WriteTo, Send, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials (overridden), SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the Archiving Request Class:

Archiving Request method Purpose

AddMetaItem(string

metaItemType, string

metaItemValue)

Provides some meta data to be associated with the archive
data object.

SetData(byte[] /string) Provides the data to be archived.

SetDataType(string

mimeType)
Specifies the MIME type of the data to be archived.

SetFilePath(string

filePath)
As an alternative to sending the data to be archived, it can
be provided as a network file path.

SetNonce(string nonce) Provides a nonce value (a random value).

SetPolicyID(string

profile)
Specifies the LTAN profile to be used for the request.

SetReference(string

reference)
Specifies a reference for the archived data.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 129 of 181

SetRequestTime(DateTime

requestTime)
Specifies the request creation time.

SetSerial(string

serialNumber)
Specifies a serial number for the request.

SetTransactionId(string

transactionIdentifier)
Specifies the unique transaction Id to be assigned to the
request.

SetVersion(string version) Specifies the version number of the protocol.

SetRequestMode(int mode) Specifies the request mode which can be either XML or
HTTP (ArchivingRequest.XML, ArchivingRequest.HTTP) –
XML is the default mode.

11.4.3 Sending the Archiving Request

Once the Archiving request message has been prepared, it is sent to ADSS Server using the following
method call:

var archivingResponse =

(ArchivingResponse)archivingRequest.Send(ltansServiceAddress);

An example of the ltansServiceAddess URL is: http://machine-name:8777/adss/ltap

11.4.4 Example of creating and sending an Archiving Request

11.5 Archiving Response Class

The Archiving Response class inherits the following methods from the Response and Message classes.
There are described in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetRequestID, GetSigningCertificates, GetStatus,

IsSuccessful.

Note, GetStatus() returns the status of the request, either granted or rejected.

http://machine-name:8777/adss/ltap

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 130 of 181

In addition, the following methods are specific to the class:

Archiving Response Method Purpose

GetCoreServiceType() returns

string
Returns the type of LTAN operation.

GetData() returns byte[] Returns the archived data.

GetDataAsString()returns

string
Returns the archived data in string format.

GetDataOpaque() returns string Returns the data as a Base 64 encoded string.

GetListIds() returns ArrayList Returns the ListIDs if these were requested in the
Archive Request.

GetMetaItems() returns

Hashtable

or GetMetaItems (string refID)

returns Hashtable

Returns the Meta Data (optionally supplying a
reference identifier).

GetNonce() returns string Returns the nonce value for comparison with the one
sent in the request.

GetPolicyId() returns string Returns the LTAN profile Id.

GetReference() returns string Returns the reference of the archived data.

GetRequesterId() returns

string
Returns the unique identifier of the request.

GetRequestTime() returns

DateTime
Returns the request time that was sent in the request.

GetSerial() returns string Returns the serial number of the request.

GetServiceId() returns string Returns the unique identifier of the service.

GetTransactionId() returns

string
Returns the unique transaction identifier of the request.

GetVersion() returns string Returns the version of the protocol.

GetNotarySignatureStatus()

returns VerificationResponse
Returns the Verification response of Notary signature.

getDataSignatureStatusWhenArch

ived() returns

VerificationResponse

Returns the Verification response of signed object
when archived.

getDataSignatureStatus ()

returns VerificationResponse
Returns the Verification response of signed object.

getTimestampTokens() returns

TimeStampToken
Returns the array of timestamp tokens.

getErsInputXML () returns

Document
Returns the XML that was used in ERS computation.

getNotarySignature() returns

Document
Returns the Notary signature.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 131 of 181

11.5.1 Example of processing the Archiving Response

11.6 LTANS Service Sample Code
Java and .Net sample code is provided as part of the ADSS Client SDK and can be used to make
LTANS Service requests and to process the responses.

The Java API provides the required classes under the package:

com.ascertia.adss.client.api.ltan

The .Net API provides the required classes under the namespace:

Com.Ascertia.ADSS.Client.API.LTAN.

11.6.1 Java API Sample Code

The following sample programs demonstrate how the Java API can be used to send an archiving
request to the LTANS Service and to process the response:

samples/src/com/ascertia/adss/client/samples/ltan/CreateLtanArchivingRequ

est.java

samples/src/com/ascertia/adss/client/samples/ltan/CreateLtanExportRequest

.java

samples/src/com/ascertia/adss/client/samples/ltan/CreateLtanDeleteRequest

.java

samples/src/com/ascertia/adss/client/samples/ltan/CreateLtanListIDsReques

t.java

samples/src/com/ascertia/adss/client/samples/ltan/CreateLtanRenewRequest.

java

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/LtanArchive.bat

samples/bin/LtanExport.bat

samples/bin/LtanDelete.bat

samples/bin/LtanListIDs.bat

samples/bin/LtanRenew.bat

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 132 of 181

11.6.2 .Net API Sample Code

The following sample programs demonstrate how the .Net API can be used to send an archiving request
to the LTANS Service and to process the response:

samples/src/Com/Ascertia/ADSS/Client/Samples/LTAN/CreateLtanArchivingRequ

est.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/LTAN/CreateLtanExportRequest

.cs

samples/src/Com/Ascertia/ADSS/Client/Samples/LTAN/CreateLtanDeleteRequest

.cs

samples/src/com/ascertia/adss/client/samples/ltan/CreateLtanListIDsReques

t.cs

samples/src/com/ascertia/adss/client/samples/ltan/CreateLtanRenewRequest.

cs

Precompiled and ready to run version of the above sample programs can be found at:

samples/bin/LtanArchive.bat

samples/bin/LtanExport.bat

samples/bin/LtanDelete.bat

samples/bin/LtanListIDs.bat

samples/bin/LtanRenew.bat

11.7 ADSS LTANS Service Supported Algorithms
The following is a list of signing/hashing algorithms and key lengths that ADSS LTANS Service supports:

ADSS Service Signing Algorithms Hashing
Algorithms

Signing Key Lengths

LTANS SHA1WithRSAEncryption
SHA224WithRSAEncryption
SHA256WithRSAEncryption
SHA384WithRSAEncryption
SHA512WithRSAEncryption
RipeMD128WithRSAEncryption
RipeMD160WithRSAEncryption
SHA1withECDSA
SHA224withECDSA
SHA256withECDSA
SHA384withECDSA
SHA512withECDSA

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512
RipeMD128
RipeMD160

RSA:
1024, 2048, 3072, 4096

ECDSA:
192,224,256,384,521

11.8 Error Codes
ADSS LTANS Service returns the following error codes in case of any failure:

Error Code Error Message

48001 LTANS service not enabled in license.

48002 LTANS web service not enabled.

48003 LTANS service license has expired.

48004 LTANS service is stopped.

48005 The request must be signed.

48006 Request does not comply with LTAP XML schema.

48007 An internal error occurred while processing the request - see the
LTANS service debug logs for details.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 133 of 181

48008 Request signature does not verify.

48009 See the LTANS service debug logs for details.

48010 Request contains unsupported parameters.

48011 Requested profile name is not found.

48012 Timestamp token not received for archive data.

48013 Evidence record not generated.

48014 Archived object could not be signed.

48015 An internal error occurred while processing the request - see the
LTANS service debug logs for details.

48016 Request does not contain data to archive.

48017 Archived object does not exist.

48018 Requested operation not supported.

48019 Default profile not configured and neither found in request.

48020 Archive object signing certificate has expired.

48021 Archive object signing certificate is revoked or has a status of
unknown.

48022 Archive object cannot be published on the URL.

48023 Archive object could not be written to file system.

48024 Profile does not allow archive object deletion.

48025 Operation not allowed by profile.

48026 Archive data signature not verified.

48027 Archive data not found.

48028 Profile does not allow verification of archived objects.

48029 Failed to create XAdES-X-L signature for archive object.

48030 No meta data found in request.

48031 Either LTANS profile does not exist or marked inactive.

48032 LTANS profile is not allowed to the client.

48033 Either LTANS default profile is inactive or not allowed to client.

48034 An internal error occurred while processing the request - see the
LTANS service debug logs for details.

48035 No LTAP operation specified.

48036 Requested LTAP operation not allowed.

48037 LTANS service not allowed.

48038 Failed to read data from specified file path.

48039 An internal error occurred while processing the request - failed to insert
meta data and/or archived object - see the LTANS service debug logs
for details.

48040 Archived object does not exist.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 134 of 181

48041 Cannot save archived object at the specified file path.

48042 Archived object does not exist.

48043 See the LTANS service debug logs for details.

48044 Invalid archived object deletion setting.

48045 Archived object does not exist.

48046 Archived object does not exist.

48047 Archived object not signed.

48048 Archive object hash not available.

48049 Archived object hash and archive signature hash does not match.

48050 Hash could not be computed.

48051 Evidence record data hash does not match archive hash.

48052 Archived data signature does not verify.

48053 LTANS service not enabled in system

48054 No archived object found matching the provided meta data.

48055 Data type of archive object not found in request.

48056 ERS or XML has altered.

48057 Meta item type has changed.

48058 Meta item value has changed.

48059 LTANS profile is inactive.

48060 LTANS default profile is inactive.

48061 Archived object is inactive.

48062 Data type length should not be greater than 20 characters.

48063 Length of meta item type should not be greater than 200 characters.

48064 Length of meta item value should not be greater than 500 characters.

48065 Archive object does not exist against the reference number.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 135 of 181

12 ADSS Decryption Service
The Decryption Service provides a centralised document and data decryption service under controlled
and authorised conditions. The decryption protocol is based on the OASIS DSS-X decryption profile.

End users submit encrypted (possibly signed and encrypted) documents to a business application and
these are decrypted at ADSS Server. For example, in an e-Tendering application, a special version of
Go>Sign Desktop is used to Encrypt XML documents which the business application then asks ADSS
Server to decrypt according to a Decryption Profile. The Decryption Profile specifies which keys the
Decryption Service should use for the decryption.

The following diagram illustrates the process:

12.1 ADSS Decryption Service Profiles
The ADSS Decryption Service requires that Decryption Profiles are defined at ADSS Server. These
specify how an encrypted object will be decrypted by the service.

Refer to the following online admin guide for an explanation of Decryption Profile settings:

Configuring the Decryption Service (ascertia.com)

12.2 The ADSS Decryption Service API
In order to simplify the use of the OASIS DSS-X Decryption protocol a Decryption Service API is
provided as part of the ADSS Client SDK.

The API consists of the following classes:

 Decryption Request

 Decryption Response

12.3 Decryption Request Class

12.3.1 Decryption Request Constructor

The Decryption Request Class has four constructors which allow for different ways to specify the source
of the data to be decrypted. Currently just XML decryption is supported and the XML data can be
provided as a file path string, byte[], Stream or XmlDocument.

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/configuring_the_decryption_servi.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 136 of 181

Below is an example of the constructor where the data is provided as a file path:

var decryptionRequest = new DecryptionRequest(clientID, filePath,

DecryptionRequest.MIME_TYPE_XML);

12.3.2 Decryption Request Methods

The Decryption Request Class (DecryptionRequest) inherit a number of methods from the generic
Request and Message classes which are described in section 3 as well as in the JavaDoc and
Sandcastle class documentation:

ToString, WriteTo, Send, SetProxy, SetRequestID, SetRequestRetries,

SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the Decryption Request Class:

Decryption Request method Purpose

SetCertificateAlias(string

certAlias)
Specifies the key used for decryption. This will override any
key set up in the referenced profile.

SetPassword(string

password)
Specifies the PKCS12 password for accessing the
decryption key.

SetProfileId(string

profileId)
Sets the profile ID.

12.3.3 Sending the Decryption Request

Once the Decryption request message has been prepared, it is sent to ADSS Server using the following
method call:

var decryptionResponse =

(DecryptionResponse)decryptionRequest.Send(decryptionServiceAddress);

The decryptionServiceAddress URL is that of the Decryption Service e.g. http://machine-
name:8777/adss/decryption

12.3.4 Example of creating and sending a Decryption Request

http://machine-name:8777/adss/decryption
http://machine-name:8777/adss/decryption

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 137 of 181

12.4 Decryption Response Class
The Decryption Response class (DecryptionResponse) inherits the following methods from the
Response and Message classes. There are described in section 3 as well as in the JavaDoc and
Sandcastle class documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetRequestID, GetSigningCertificates, GetStatus,

IsSuccessful.

In addition, the following methods are specific to the class:

Decryption Response Method Purpose

GetDocument() returns byte[] Returns the plain (clear text) document.

GetProfileId() returns string Returns the Decryption Profile Id used to process the
request.

GetXmlDocument() returns

XmlDocument
Returns the plain (clear text) XML document.

PublishDocument(string

/Stream)
Publishes the plain (clear text) to the specified path or
stream.

12.5 Error Codes
ADSS Decryption Service returns the following error codes in case of any failure:

Error Code Error Message

49001 An internal error occurred while processing the request - see the
Decryption service debug logs for details.

49002 Originator authentication failed.

49003 Decryption service license has expired.

49004 Decryption service is stopped.

49005 Decryption service not enabled in license.

49006 Signed request required.

49007 Signature verification failed.

49008 Request is invalid and not according to schema.

49009 The decryption profile is not appropriate for this file type.

49010 Private key is not available.

49011 Failed to decrypt document.

49012 Invalid encrypted document structure.

49013 Encryption certificate is not available.

49014 Decryption key is not available.

49015 Decryption profile is not allowed to the client.

49016 Certificate for decryption not allowed for this client.

49017 Decryption service not allowed.

49018 Decryption service not enabled in system.

49019 Decryption profile is inactive.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 138 of 181

49020 Decryption profile does not exist or marked inactive.

49021 Default decryption profile not configured. Provide decryption
profile in request.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 139 of 181

13 ADSS Go>Sign Service

13.1 ADSS Go>Sign Service Overview
ADSS Go>Sign Service empowers business applications to perform document signing on user’s machines
using the credentials held either locally by the user or server-side keys. ADSS Go>Sign Service also enables
business applications to show PDF documents to users using a server-side HTML-based Go>Sign Document
Viewer.

The above diagram describes how the ADSS Go>Sign Service and business application interact with each
other. The high-level process is as follows:

 Business application specific web page sends a request to the ADSS Go>Sign Service providing
information about its document signing needs.

 The ADSS Go>Sign Service receives the request and responds to web page with the relevant
JavaScript code to service its needs.

 The web page receives the JavaScript code and renders it for the user.

 The user can then optionally view the document and sign it using either locally-held or server-held
signing key (note Go>Sign service also supports key generation and certification services).

 During the signing process, the ADSS Go>Sign Service may use the backend ADSS Services, e.g.
to generate server-side signatures, verify signatures created by the user, and to enhance basic user
signatures into long-term signature formats. Furthermore, if the Go>Sign Service is being used for
key generation and certification, then the back ADSS Server can be used to issue the certificates for
the user and securely store the user’s private key container.

The ADSS Go>Sign Service consists of two major components: The Go>Sign Desktop and the Go>Sign
Document viewer. A business application can use any of the following combination based on its
requirements:

 Go>Sign Desktop only (e.g. if the business application will display the document by itself)

 Go>Sign Document Viewer only (this is not so common, as the primary purpose of the Go>Sign
service is to sign documents)

 Go>Sign Desktop and Document Viewer (this is where the business application is relying on the
Go>Sign Service to display the PDF document to the user and also to get the user to sign it).

Note: In order to learn how the business applications can integrate ADSS Go>Sign Service and utilize it
features, read the “ADSS-Go-Sign-Developers-Guide.pdf” shipped within the ADSS Client SDK package.

13.2 Error Codes
ADSS Go>Sign Service returns the following error codes in case of any failure:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 140 of 181

Error Code Error Message

52551 User information is not available.

52552 PDF is not available.

52553 Document is not available in request.

52254 Originator ID not found in the request.

52255 Internal Error

52256 Go>Sign profile is inactive.

52257 Go>Sign profile does not exist.

52258 Go>Sign profile is not allowed to this client.

52259 Go>Sign service is not allowed to this client.

52260 Incorrect file format and cannot be converted into PDF.

52261 Field information is not available to the Go>Sign Service.

52262 Field signing failure.

52263 Error occurred during processing request.

52264 Signing service not available.

52265 Failed to create fields.

52266 Document conversion is not allowed.

52268 Go>Sign transaction id not available.

52269 Invalid originator ID in the request.

52270 Default profile not configured and neither found in request.

52271 The field name is not specified.

52272 Invalid field coordinates.

52273 Failed to create fields in the document.

52274 A field with same name already exists.

52275 Some mandatory request parameter(s) are missing.

52277 Client session timed out.

52278 PDF form filling failure.

52279 PDF form filling not allowed.

52280 Certificate not found.

52281 Go>Sign service is not enabled in license.

52282 Go>Sign service license is expired.

52283 Go>Sign service is not enabled in the system.

52284 Go>Sign service is stopped.

52285 Authentication failed.

52286 The document already contains Document Timestamp signature.

52287 The document permissions do not allow this operation.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 141 of 181

52288 Downloading of unprocessed document is not allowed.

52289 Signature timeout reached. Retry.

52290 Mobile signing failure.

52292 User cancelled signing operation.

52293 Invalid transaction id.

52294 Signing certificate is revoked.

52295 Signature not ok.

52296 Signature invalid.

52297 Assembly operation failure.

52298 Unsupported signature type.

52299 Input is not a valid MS Word document or corrupted.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 142 of 181

14 ADSS RA Service
The ADSS Server RA Service provides the ability to:

 Manage the RAS/SAM users

 Register and Revoke Certificates

 To retrieve the certificates issued asynchronously

These operations are accessible either:

 directly via an Ascertia proprietary XML protocol. Revoke certificate is only supported in
Ascertia proprietary XML protocol.

 using the Simple Certificate Enrollment Protocol (SCEP). Recover Certificate operation is only
supported in SCEP interface

 via a Client API.

Registered Business Applications send requests to ADSS Server, referring to a particular RA Profile,
and receive responses. Normally most of the RA related parameters do not need to be sent in the
request as they are already configured in the RA Profile.

14.1 RA Use Cases and Ascertia Protocol Schema
Various RA use cases and Ascertia proprietary protocol schemas for RA are discussed in section 20.

14.2 RA Profiles
The ADSS RA Service requires that RA Profiles are defined at ADSS Server. These profiles specify
which ADSS CA server and profile will be used to issue certificates, the key length and key type to be
used, the certificate validity period, any default distinguished name parameters (e.g. country name,
organisational unit etc.).

Refer to the following link in the online admin guide for an explanation of RA Profile settings:

Step 2 - RA Profiles (ascertia.com)

14.3 The RA Service API
The RA Service API is provided as part of the ADSS Client SDK and consists of a Registration Request,
Registration Response , ScepRequest and ScepResponse classes.

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/step2_ra_profiles.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 143 of 181

14.3.1 Registration Request Class

The following constructor is used to build the initial Registration Request.

RegistrationRequest registrationRequest = new RegistrationRequest

(clientID, requestType, certificateAlias);

The clientID identifies the business application that is making the call. This clientID must already

be registered at ADSS Server Client Manager.

The requestType identifies one of the following available services i.e.:

REQUEST_TYPE_CREATE_CERTIFICATE Certificate Creation

REQUEST_TYPE_RENEW_CERTIFICATE Certificate Renew

REQUEST_TYPE_REKEY_CERTIFICATE Certificate Rekey

REQUEST_TYPE_DELETE_CERTIFICATE Certificate Delete

REQUEST_TYPE_IMPORT Certificate Import

REQUEST_TYPE_REVOKE Certificate Revocation

REQUEST_TYPE_STATUS Certificate Status

REQUEST_TYPE_REGISTER_USER User Registration

REQUEST_TYPE_UPDATE_USER User Update

REQUEST_TYPE_DELETE_USER User Delete

REQUEST_TYPE_GET_USER User Get

REQUEST_TYPE_GET_USER_DEVICES User Devices Get

REQUEST_TYPE_DELETE_USER_DEVICE User Device Delete

REQUEST_TYPE_GET_USER_CERTIFICATES User Certificates Get

REQUEST_TYPE_GET_USERS Users Get

REQUEST_TYPE_CHANGE_PASSWORD User Password Change

REQUEST_TYPE_RECOVER_PASSWORD User Password Recover

REQUEST_TYPE_CONFIRM_RECOVER_PASSWORD User Password Confirm Recover

REQUEST_TYPE_CHANGE_EMAIL User Email Change

REQUEST_TYPE_CONFIRM_CHANGE_EMAIL User Email Confirm Change

REQUEST_TYPE_CHANGE_MOBILE User Mobile Change

REQUEST_TYPE_CONFIRM_CHANGE_MOBILE User Mobile Confirm Change

14.3.2 Registration Request methods

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send (overridden), SetProxy, SetRequestID,

SetRequestRetries, SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the Registration Request class:

Registration Request Method Purpose

SetProfileId (string) This specifies the registration profile Id that will be used
by RA Service to serve the request.

SetPkcs12Password (string) Specifies the PKCS#12 password. This method is only
used if the key pair is generated at server and held in
software.

SetSubjectDN (string) Specifies the Subject DN of the requested certificate.
Multiple values are separated by comma (,). Possible
values are:

CN, OU, O, L, S, E, C, SN, B, ST, P, EVL,

EVS and EVC

SetCertAlias (string) Specifies the certificate alias that is used as reference
at ADSS RA Server.

Moverover, it would be used to identify the user’s
signing certificates on the RAS/SAM servers.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 144 of 181

It’s mandatory parameter in the user enrollment at
RAS/SAM.

For RAS/SAM requests

(allowed characters are a-zA-Z0-9_.@-)

SetPKCS10 (byte[]) Specifies the pkcs#10 certificate requests if a key pair
is generated at client.

SetValidityPeriod Specify the validity period for the certificate life to be
created or renewed

e.g. 12

SetValidityUnit Specify the validity period unit of the certificate life in
'MINS','HOURS','DAYS','MONTHS' or 'YEARS'

SetRevocationReason (string) Specifies the Revocation Reason.

SetOnholdInstructionCode

(onHoldInstructionCode)
Specifies the ‘on hold’ instruction code.

SetChallengePassword (string) Specifies the challenge password for device certificate.

SetEmailAddress (string) Specifies the email address of requester.

Moreover, the email address would be used to register
user at RAS/SAM. Later, it would be used to send
OTPs by RAS.

It is a mandatory parameter in the user registration
request.

For RAS/SAM requests (max. 100 characters)

SetUserName (string) Specifies the user name that will be displayed on
mobile device.

It is an optional parameter in the user registration
request.

For RAS/SAM requests (max. 50 characters)

addSubjectAlternativeName

(string, string
It is used to add subject alternative name extension in
X.509 certificate. The first parameter specifies the
name while the second parameter specifies the value.
The possible values for first parameter are:

rfc822Name

dNSName

iPAddress

uniformResourceIdentifier

directoryName

otherName

This method can be called multiple times in order to add
multiple names in subject alternative name extension.

SetTransactionID (string) Specifies the transaction Id of the certificate request to
find the status of certificate request in asynchronous
mode.

SetUserID (string) User ID to identify a user at the RAS/SAM server. Later,
its used to authenticate a user, fetch user devices and
certificates info.

It is a mandatory parameter in the user registration
request.

For RAS/SAM requests

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 145 of 181

(max. 50 characters and allowed characters are a-zA-
Z0-9_.@-)

SetUserStatus (string) Specifies the user status

SetUserNewEmail (string) Specifies the new email address of a user to replace
the old email address

For RAS/SAM requests (max. 100 characters)

SetUserNewMobile (string) Specifies the user new mobile number to replace the
old user mobile number

SetUserOldPassword (string) Specifies the user old password

SetUserNewPassword (string) Specifies the new password of a user to replace the old
password

For RAS/SAM requests (max. 50 characters)

SetMobileNumber (string) It uses in user registration at RAS/SAM. Later, it would
be used to send OTPs by RAS.

It is a mandatory parameter in the user registration
request.

For RAS/SAM requests (max. 100 characters)

SetCertificate (byte[]) Specifies the certificate to be import after certification
from the external CA. It will be in uses when the RA
configured to certify the key pairs asynchronously.

SetCertificate (string) Specifies the certificate path to be import after
certification from the external CA. It will be in uses when
the RA configured to certify the key pairs
asynchronously

SetCertificateID (string) Specifies the certificate ID

SetDeviceID (string) Specifies the device ID to delete the user device

SetEmailOtp (string) Specifies the email OTP to update the user mobile no,
user email address and recover user password

SetMobileOtp (string) Specifies the mobile OTP to update the user mobile no,
user email address and recover user password

14.3.3 Other Registration Request Methods

Some other Registration Request methods are defined such as those for communication purposes (e.g.
use of proxy, timeouts etc.):

SetProxy, SetRequestID, SetRequestRetries, SetTimeout.

For these and others refer to the JavaDoc and Sandcastle documentation.

14.3.4 Sending the Registration Request

Once the registration request message has been fully built using the above methods, it can be sent to
ADSS Server using the following call:

var registerationResponse =

(RegiserationResponse)registerationRequest.Send(URL);

The URL, is that of the RA Service e.g.

http://machine-name:8777/adss/ra/cri

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 146 of 181

For a mutually authenticated TLS request, it is:

https://machine-name:8779/adss/ra/cri

14.3.5 Example of a Registration Request using the Ascertia XML protocol

// Constructing RA request to create certificate

RegistrationRequest obj_registrationRequest = new

RegistrationRequest("samples_test_client",

RegistrationRequest.REQUEST_TYPE_CREATE_CERTIFICATE, certAlias);

obj_registrationRequest.setRequestId("create-request-001");

obj_registrationRequest.setProfileId("adss:ra:profile:001");

obj_registrationRequest.setUserName("sample_user");

obj_registrationRequest.setEmailAddress("sample@ascertia.com");

obj_registrationRequest.setSubjectDN("CN=Sample,OU=Dev,O=ASC,C=GB");

obj_registrationRequest.setPkcs12Password("password");

// Sending the above constructed request to the ADSS RA service

RegistrationResponse obj_registrationResponse =(RegistrationResponse)

obj_registrationRequest.send(“http://localhost:8777/adss/ra/cri");

14.3.6 Example of a Certificate Renew Request

// Creating request to Renew Certificate
RegistrationRequest obj_registrationRequest = new
RegistrationRequest("samples_test_client",
 RegistrationRequest.REQUEST_TYPE_RENEW_CERTIFICATE, "certAlias");
obj_registrationRequest.SetRequestID("Rekey-request-01");
obj_registrationRequest.SetProfileID("adss:ra:profile:001");
obj_registrationRequest.SetSubjectDN("CN=Sample,OU=Dev,O=ASC,C=GB ");
obj_registrationRequest.SetPkcs12Password ("password");

// Sending the above constructed request to the ADSS server
RegistrationResponse obj_registrationResponse = (RegistrationResponse)
 obj_registrationRequest.Send("http://localhost:8777/adss/ra/cri");

14.3.7 Example of a Certificate Rekey Request

// Creating request to Rekey Certificate
RegistrationRequest obj_registrationRequest = new
RegistrationRequest("samples_test_client",
 RegistrationRequest.REQUEST_TYPE_REKEY_CERTIFICATE, "certAlias");
obj_registrationRequest.SetRequestID("Rekey-request-01");
obj_registrationRequest.SetProfileID("adss:ra:profile:001");
obj_registrationRequest.SetSubjectDN("CN=Sample,OU=Dev,O=ASC,C=GB ");
obj_registrationRequest.SetPkcs12Password ("password");

// Sending the above constructed request to the ADSS server
RegistrationResponse obj_registrationResponse = (RegistrationResponse)
 obj_registrationRequest.Send("http://localhost:8777/adss/ra/cri");

https://machine-name:8779/adss/ra/cri

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 147 of 181

14.3.8 Example of a Revocation Request using the Ascertia XML protocol

// constructing RA request to revoke certificate

RegistrationRequest obj_registrationRequest = new

RegistrationRequest("samples_test_client",

RegistrationRequest.REQUEST_TYPE_REVOKE, certAlias);

obj_registrationRequest.setRequestId("revoke-request-001");

obj_registrationRequest.setProfileId("adss:ra:profile:001");

obj_registrationRequest.setRevocationReason(RegistrationRequest.

REVOCATION_REASON_AFFILIATIONCHANGED);

// Sending the above constructed request to the ADSS RA service

RegistrationResponse obj_registrationResponse = (RegistrationResponse)

obj_registrationRequest.send(“http://localhost:8777/adss/ra/cri");

14.3.9 Example of a Certificate Status Request

// Constructing certificate status request

RegistrationRequest obj_registrationRequest = new

RegistrationRequest("samples_test_client",

RegistrationRequest.REQUEST_TYPE_STATUS);

obj_registrationRequest.setRequestId("status-request-001");

obj_registrationRequest.setProfileId("adss:ra:profile:001");

obj_registrationRequest.setTransactionID(“TransactionID”);

// Sending the above constructed request to the ADSS server

RegistrationResponse obj_registrationResponse = (RegistrationResponse)

obj_registrationRequest.send(“http://localhost:8777/adss/ra/cri");

14.3.10 Example of a Profile Info Request

// Creating request for RA Profile Info
RegistrationRequest obj_registrationRequest = new
RegistrationRequest("samples_test_client",
 RegistrationRequest.REQUEST_TYPE_GET_PROFILE_INFO, "adss:ra:profile:001");
obj_registrationRequest.SetRequestID("Get_profile_request01");

// Sending the above constructed request to the ADSS server
RegistrationResponse obj_registrationResponse = (RegistrationResponse)
 obj_registrationRequest.Send("http://localhost:8777/adss/ra/cri");

14.3.11 Registration Response Class

The following methods of the Registration Response class are inherited from the generic Response and
Message classes and are described in section 3 as well as in the JavaDoc and Sandcastle class
documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage,

GetException, GetRequestID, GetSigningCertificates, GetStatus,

IsSuccessful.

In addition, the following methods are specific to the Registration Response Class:

Registration Response Method Purpose

GetCertificate() returns

X509Certificate
Returns the X509 certificate object.

GetProfileId () returns string Returns the RA profile Id used by RA Service to
process this request.

GetTransactionId () returns

string
Returns the transaction Id of the corresponding
request.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 148 of 181

GetPKCS7() returns byte[] Returns the PKCS#7 certificate chain.

GetPKCS12 () returns byte[] Returns the PKCS#12.

PublishCertificate(string

/Stream)
Publishes the certificate to the specified path or stream.

PublishPKCS12(string /Stream) Publishes the PKCS#12 data to the specified path or
stream.

PublishPKCS7(string /Stream) Publishes the PKCS#7 data to the specified path or
stream.

GetEmail() returns string Returns the user email address.

GetUserCertificates() returns

List<UserCertificateType>
Returns the user all certificates.

GetUserDevices() return

List<UserDeviceType>
Returns the user all devices.

GetUsers() return

List<UserType>
Returns the all users.

GetProfileInfo() returns

ProfileInfoType
Returns the ProfileInfoType object.

14.3.12 ScepRequest

Scep request class is used to send registration request to RA Service for a device certificate. The
following constructor is used to build the registration request.

var registrationRequest = new ScepRequest (publicKey, privateKey,

encryptionCertificate, subjectDN, transactionId, senderNonce);

The publicKey identifies the public key of requested certificate, privateKey identifies the private key

of the requested certificate, encryptionCertificate identifies the certificate to encrypt the request

and transactionId identifies the unique identifier of the request. The privateKey is also used to sign
the Scep request.

14.3.13 ScepRequest Methods

The following methods are inherited from the generic Request and Message classes and are described
in section 3 as well as in the JavaDoc and Sandcastle class documentation:

ToString, WriteTo, Send (overridden), SetProxy, SetRequestID,

SetRequestRetries, SetSigningCredentials, SetSigningMode, SetSoapVersion,

SetSSLClientCredentials, SetTimeout, SetVerifyResponse.

In addition, the following methods are specific to the SCEP Request class:

Scep Request Method Purpose

SetDigestAlgorithmOID (String) Specifies the digest algorithm OID.

SetSignatureAlgorithm (String) Specifies the signature algorithm for signing SCEP
request.

SetRequestMethod (String) Specifies the request method GET/POST.

SetChallengePassword (String) Specifies the challenge password for device certificate.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 149 of 181

14.3.14 Other ScepRequest Methods

Some other Scep Request methods are defined such as those for communication purposes (e.g. use
of proxy, timeouts etc.):

SetProxy, SetRequestID, SetRequestRetries, SetTimeout.

For these and others refer to the JavaDoc and Sandcastle documentation.

14.3.15 Sending the ScepRequest

Once the scep request message has been fully built using the above methods, it can be sent to ADSS
Server using the following call:

var registrationResponse = (ScepResponse) registrationRequest.Send(URL);

The URL is that of the RA Service e.g.

http://machine-name:8777/adss/ra/scep

For a mutually authenticated TLS request, it is:

https://machine-name:8779/adss/ra/scep

14.3.16 Example of a Registration Request using the SCEP protocol

// Constructing RA request to create certificate

ScepRequest obj_scepRequest = new ScepRequest("publicKey","privateKey",

“encryptionCertificate”,”subjectDN”, “transactionId”, “senderNonce”);

obj_scepRequest.setRequestMethod(ScepRequest.POST);

obj_scepRequest.setChallengePassword("password");

// Sending the above constructed request to the ADSS server

ScepResponse obj_scepResponse=(ScepResponse)

obj_scepRequest.send(http://localhost:8777/adss/ra/scep");

14.3.17 Example of a Certificate Retrieval Request using the SCEP protocol

// Constructing RA request to recover certificate

ScepRequest obj_scepRequest = new ScepRequest("publicKey","privateKey",

“encryptionCertificate”,”issuerName”, ”serialNumber”, “transactionId”,

“senderNonce”);

obj_ scepRequest.setRequestMethod(ScepRequest.POST);

// Sending the above constructed request to the ADSS server

ScepResponse obj_scepResponse=(ScepResponse)

obj_scepRequest.send((http://localhost:8777/adss/ra/scep");

14.3.18 Example of a get CA Certificate Request using the SCEP protocol

// Constructing RA request to get CA certificate

ScepRequest obj_scepRequest=new ScepRequest(ScepRequest.OPERATION_TYPE_GETCACERT);

// Sending the above constructed request to the ADSS server

ScepResponse obj_scepResponse=(ScepResponse)
obj_scepRequest.send(http://localhost:8777/adss/ra/scep");

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 150 of 181

14.3.19 Example of a get CA Capabilities Request using the SCEP protocol

// Constructing RA request to get CA capabilities

ScepRequest obj_scepRequest=new ScepRequest(ScepRequest.OPERATION_TYPE_GETCACAPS);

// Sending the above constructed request to the ADSS server

ScepResponse obj_scepResponse=(ScepResponse)
obj_scepRequest.send(http://localhost:8777/adss/ra/scep");

14.3.20 ScepResponse Class

The following methods of the ScepResponse class inherited from the generic Response and Message
classes. These classes are described in section 3 as well as in the JavaDoc and Sandcastle class
documentation:

ToString, WriteTo, ContainsException, GetErrorCode, GetErrorMessage, GetException,

GetRequestID, GetSigningCertificates, GetStatus, IsSuccessful.

In addition, the following methods are specific to the Scep Response Class:

SCEP Request Method Purpose

GetCaRaCertificate() returns

X509Certificate
Returns the X509 certificate object.

GetSigningTime() returns

DateTime
Returns the signing time of response.

GetRecipientNonce () returns

byte[]
Returns the recipient nonce value.

GetIssuedCerts () returns

X509Certificate[]
Returns the issued X509 certificate array.

GetRequestId() returns string Returns the Request ID of the certification request.

GetSenderNonce () returns

byte[]
Returns the sender nonce value.

GetFailInfo () returns int Returns the fail info value.

GetMessageType () returns int Returns message type value i.e. application/x-pki-
message, application/x-x509-ca-cert etc.

GetPkiStatus () returns int Returns PKI status value.

GetTransactionID () returns

string
Returns transaction id of request.

GetPKCS7 () return byte[] Returns PKCS#7 bytes.

GetCACaps () returns string Returns CA capabilities in string.

PublishCertificate(string

/Stream)
Publishes the certificate to the specified path or stream.

PublishPKCS7(string /Stream) Publishes the PKCS#7 data to the specified path or
stream.

PublishIssuedCerts (string) Publishes the issued certificates to the specified path.

14.4 RA Service Sample Code
Java sample code is provided as part of the ADSS Client SDK and can be used to make RA Service
requests and to process the RA Service responses.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 151 of 181

The Java API provides the required classes under the package:

com.ascertia.adss.client.api.ra

14.4.1 Java API Sample Code

The following sample programs demonstrate how the Java API can be used to send a Registeration
request and process the response:

samples/src/com/ascertia/adss/client/samples/ra/CreateCertificate.java

samples/src/com/ascertia/adss/client/samples/ra/RevokeCertificate.java

samples/src/com/ascertia/adss/client/samples/ra/StatusCertificate.java

samples/src/com/ascertia/adss/client/samples/ra/RegisterUser.java

samples/src/com/ascertia/adss/client/samples/ra/UpdateUser.java

samples/src/com/ascertia/adss/client/samples/ra/DeleteUser.java

samples/src/com/ascertia/adss/client/samples/ra/GetUser.java

samples/src/com/ascertia/adss/client/samples/ra/GetUsers.java

samples/src/com/ascertia/adss/client/samples/ra/GetUserDevices.java

samples/src/com/ascertia/adss/client/samples/ra/GetUserCertificates.java

samples/src/com/ascertia/adss/client/samples/ra/ChangePassword.java

samples/src/com/ascertia/adss/client/samples/ra/RecoverPassword.java

samples/src/com/ascertia/adss/client/samples/ra/ConfirmRecoverPassword.ja

va

samples/src/com/ascertia/adss/client/samples/ra/ChangeEmail.java

samples/src/com/ascertia/adss/client/samples/ra/ConfirmChangeEmail.java

samples/src/com/ascertia/adss/client/samples/ra/ChangeMobile.java

samples/src/com/ascertia/adss/client/samples/ra/ConfirmChangeMobile.java

samples/src/com/ascertia/adss/client/samples/ra/DeleteDevice.java

samples/src/com/ascertia/adss/client/samples/ra/GetRaProfileInfo.java

A precompiled and ready to run version of the above sample programs can be found at:

samples/bin/RACreateCertificate.bat

samples/bin/RARevokeCertificate.bat

samples/bin/RAStatusCertificate.bat

samples/bin/RARegisterUser.bat

samples/bin/RAUpdateUser.bat

samples/bin/RADeleteUser.bat

samples/bin/RAGetUser.bat

samples/bin/RAGetUsers.bat

samples/bin/RAGetUserDevices.bat

samples/bin/RAGetUserCertificates.bat

samples/bin/RAChangePassword.bat

samples/bin/RARecoverPassword.bat

samples/bin/RAConfirmRecoverPassword.bat

samples/bin/RAChangeEmail.bat

samples/bin/RAConfirmChangeEmail.bat

samples/bin/RAChangeMobile.bat

samples/bin/RAConfirmChangeMobile.bat

samples/bin/RADeleteUserDevice.bat

samples/bin/RAProfileInfo.bat

14.5 Error Codes
ADSS RA Service returns the following error codes in case of any failure:

Error Code Error Message

54001 RA profile does not exist or marked inactive.

54002 RA service is stopped.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 152 of 181

54003 RA service not enabled in license.

54004 RA service license has expired.

54005 RA service is not enabled in system.

54006 RA request must be signed.

54007 RA request signature verification failure.

54008 RA request is not schema compliant.

54009 RA profile not found.

54010 RA service not allowed.

54011 An internal error occurred while processing the request - see the
RA service debug logs for details.

54012 Authentication failed.

54013 RA default profile does not exist or marked inactive.

54014 RA profile is inactive.

54015 RA originator authentication failed.

54016 Device challenge password does not match.

54017 Device subject DN does not match.

54018 CA server address is not accessible.

54019 CA server address is not configured properly.

54020 Subject DN is invalid.

54021 Invalid request status.

54022 Invalid transaction ID.

54023 Certificate does not exist.

54024 Certificate chain does not exist.

54025 Required parameter(s) are missing.

54026 PKCS#10 is not compatible with profile.

54027 Certificate alias already exists.

54028 User name missing in request.

54029 User email address missing in request.

54030 Certificate alias missing in request.

54031 Subject DN missing in request.

54032 PFX password missing in request.

54033 Certificate alias length exceeds the limit.

54034 Default profile not configured and neither found in request.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 153 of 181

15 ADSS RAS Service
ADSS Remote Authorisation Signing (RAS) Service provides the capability to shield SAM from outside world

and act as a bridge between business/Go>Sign Mobile Application and the SAM Service. It provides the

required API interface for business applications to register users, send hash signing request, checking the

status of pending signing requests and getting the signed hash (i.e. PKCS#1 signature). It also provides the

required API interfaces for the Go>Sign Mobile app to allow users login to the app after authentication via

SMS and EMAIL OTPs, registering the mobile device with authorisation public key, sending push notifications,

fetching the authorisation request and sending the signed authorisation request (i.e. Signature Activation Data

– SAD).

RAS Service acts as a RSSP for Signing Service implementing Adobe CSC interfaces.

These operations are accessible either:

 Via ADSS RA, Certification and Signing Service

 directly via an Ascertia proprietary JSON protocol through RESTful APIs.

15.1 RAS Profiles
The ADSS RAS Service requires that RAS Profiles are defined at ADSS Server. These profiles specify ADSS
SAM Service to get user authorisation, optionally mutual authentication and define user authentication
mechanism either basic (user ID and password) or SAML assertion.

Refer to the following link in the online admin guide for an explanation of RAS Profile settings:

Step 1 - Configuring RAS Profile (ascertia.com)

Note: In order to learn how the business applications can integrate ADSS RAS Service and utilize it features,
read the “ADSS-RAS-Developers-Guide.pdf” shipped within the ADSS Client SDK package.

Refer to the following link in the online admin guide for an explanation of RAS Service:

ADSS RAS Service (ascertia.com)

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/step1_configuring_ras_profile.html
https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/adss_ras_service.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 154 of 181

16 ADSS SAM Service
ADSS SAM Service which supports Remote Authorised Signing for end users. eIDAS Regulation compliant
solution against EN 419 241 – 2. This operates within the same framework but supports use of a standard
PKCS#11 HSM. It provides the capability to manage users and their signing keys. It provides the required API
interfaces to manage users, signing keys, authorised devices, authorization requests, signing requests, getting
the signed hash (i.e. PKCS#1 signature) and their current statuses.

16.1 SAM Profiles
The ADSS SAM Service requires that SAM Profiles are defined at ADSS Server. These profiles specify user
signing key type, key length and crypto mode (Software, HSM or Cloud). It defines PKCS#1 signature
generation mechanism. It also defines the user authorization key type, length and some more constraints on
the user devices.

Refer to the following link in the online admin guide for an explanation of SAM Profile settings:

Step 2 - Configuring SAM Profile (ascertia.com)

Note: Business applications can use ADSS SAM Service via ADSS RAS Service. Follow the ADSS RAS
Service section for integration.

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/step2_configuring_sam_profile.html
http://manuals.ascertia.com/ADSS-Admin-Guide/step2_configuring_sam_profile.html
http://manuals.ascertia.com/ADSS-Admin-Guide/step2_configuring_sam_profile.html
http://manuals.ascertia.com/ADSS-Admin-Guide/step2_configuring_sam_profile.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 155 of 181

17 ADSS CSP Service
ADSS CSP (Cryptographic Service Provider) is an ADSS Server service which allows applications to create

user accounts and sign data. Currently we have a product named Virtual CSP (Windows plugin to initiate

signing process), it is a windows plugin developed in .Net/C++ technology. It is a plugin for windows letting

users sign emails / documents using keys/certificates held at server. Currently it is working with DigitalSign

developed CSP product, now we are going to have our own service named CSP Service to work with VCSP

to complete the signature process using keys held at ADSS Server. The CSP Service will also have an

interface for business applications like WebRA.

The CSP Service operations are accessible through an Ascertia proprietary JSON protocol through RESTful
APIs.

17.1 CSP Profiles
The ADSS CSP Service requires that CSP Profiles are defined at ADSS Server. These profiles specify ADSS
Signing Service forcryptographic operations, optionally mutual authentication and define user password
validation mechanism.

Refer to the following link in the online admin guide for an explanation of CSP Profile settings:

Step 3 - Configuring CSP Profile (ascertia.com)

Note: In order to learn how the business applications can integrate ADSS RAS Service and utilize it features,
read the “ADSS-CSP-Developers-Guide.pdf” shipped within the ADSS Client SDK package.

Refer to the following link in the online admin guide for an explanation of CSP Service:

ADSS CSP Service (ascertia.com)

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/step3_configuring_csp_profile.html
https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/adss_csp_service.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 156 of 181

18 Utility Classes
Currently there are two utility classes:

 AuthorisationData Class (to create an Authorisation Data XML file for creating authorised
signing requests), and

 Util Class (for document creation, writing, reading and encoding)

The Java API provides the required classes under the package:

com.ascertia.adss.client.api.util and

The .Net API provides the required classes under the namespace:

Com.Ascertia.ADSS.Client.API.Util.

18.1 AuthorisationData Class

The Authorisation Data class is used to prepare an XML Authorisation file which is later signed by one
or more individuals to authorise the use of a server held signing key.

The signed Authorisation files are attached to the signing request as explained in section 4.4.1.

For an explanation of authorisation profiles refer to the online admin guide:

Authorisation Profiles (ascertia.com)

Authorisation profiles may be selected for use in Signing profiles – again see the online admin
guide for details:

Advanced Settings (ascertia.com)

The following is a list of methods of the Authorisation Data class:

Authorisation Data Method Purpose

AuthorisationData(string

originatorId,byte[]/Strea

m/string data, int

contentType)

This first step when creating the XML Authorisation file is to
construct an initial Authorisation Control object. As input, this
takes the originator ID, it’s the client ID that must be registered
within ADSS Server. Origiantor ID is mandatory and cannot
be null or empty otherwise the server would refuse the
authorisation file.

Then it takes the first document (or document hash) for which
signing is going to be authorised. The document or hash can
be provided as a byte array, stream or file path. If supplied as
a document, it will be hashed later during publication
(PublishAuthorisationData) using the algorithm

supplied by the SetHashAlgorithm method.

The content type is one of:

- CONTENT_TYPE_DOCUMENT

- CONTENT_TYPE_HASH

AddDocument(

byte[]/Stream/string

data)

Adds a further document or document hash into the
Authorisation Control object. This has to have the same
content type as specified in the constructor above.

AddMetaDataElement(string

key, string value)
Adds a meta data element into the Authorisation Control
object.

This can be any information that will be used to help identify
the Authorisation Control file or the documents being signed.

https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/authorisation_profiles.html
https://manuals.ascertia.com/ADSS-Server/v8.2/Admin-Guide/advanced_settings.html

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 157 of 181

ComputeHash(string

hashAlgorithm, Stream

stream)

returns byte[]

Calculates a hash of an input Stream using the indicated hash
algorithm. The hash algorithm can be one of:

- HASH_ALGO_SHA1

- HASH_ALGO_SHA224

- HASH_ALGO_SHA256

- HASH_ALGO_SHA384

- HASH_ALGO_SHA512

This method can be used to create a document hash instead
of relying upon the GetAuthorisationData method.

GetAuthorisationData()

returns byte[]
Creates the Authorisation XML object from the Authorisation
Control object. The hashing of the documents in the
Authorisation Control object takes place at this time (unless
they are already supplied as hashes). The resultant
DocumentDigest element contains the concatenated hash of
the documents that will be later signed by the Signing Service
and therefore have to be matched up with the authorisation
signatures.

PublishAuthorisationData

(string filePath /Stream

stream)

Publishes the Authorisation Data Xml to the specified output
stream or file path.

SetHashAlgorithm(string

hashAlgorithm)
Sets the hash algorithm for calculating hash of documents in
the Authorisation Data object. The value can be one of:

- HASH_ALGO_SHA1

- HASH_ALGO_SHA224

- HASH_ALGO_SHA256

- HASH_ALGO_SHA384

- HASH_ALGO_SHA512

SetOriginatorID(string

originatorID)
Sets the originator ID. The originator ID must be set either
through the constructors or using this method.

GetOriginatorID() It returns the originator ID.

SetValidFrom(string

validFrom)
Sets the start of the validity period of the authorisation control
file. Validity period defines the time period during which an
authorisation control file could be considered valid.

Its an xml datetime of the format (YYYY-MM-DDThh:mm:ssZ)

GetValidFrom() Returns the starting date of the validity period.

SetValidTo(string

validTo)
Sets the end of the validity period of authorisation control file.
After this time the authorisation control file would be rejected
by server if presented for authentication.

Its an xml datetime of the format (YYYY-MM-DDThh:mm:ssZ)

GetValidTo() Return the end date of validity period.

The originator ID must be provided in the XML Authorisation control file otherwise the server
would refuse the request. Morever, this originator ID must be the same that would be sent in
the signing request.

The validity period is optional. If the validity period is provided in the authorisation control file,
the server would validate this time period and reject the request if the validity period is expired

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 158 of 181

or not yet started. Moreover, the Valid From and Valid To dates must be provided, absense of
any of these dates would result in the failure and request would be rejected by the server.

18.1.1 Example of Creating an XML Authorisation Control File

This example makes use of the above class to build and publish the (unsigned) XML Authorisation
Control file:

Later, after the XML Authorisation Control file has been signed by the authoriser(s) it is added into the
signing request:

18.2 Util Class

The Util class provides a number of general purpose methods for data conversion and file handling etc.
The methods are all defined as static so no constructor is required in order to use them:

Utility Class Method Purpose

ConvertDateToString(DateT

ime date) returns string
Converts a DateTime object to an ISO 8601 date format
string.

ConvertStringToDate(strin

g date) returns DateTime
Converts string (in ISO 8601 date format) to date.

CreateDocument(

XmlElement bodyElement)

returns XmlDocument

Reads an XmlElement object and treats this as the root
element of a new Xml document (with
org.w3c.dom.Document headers etc).

CreateDocument(byte[]

data) returns XmlDocument
Reads a byte array and converts this to a new Xml document
(with org.w3c.dom.Document headers etc).

CreateDocument(InputStrea

m is) returns

XmlDocument

Reads data from the given stream and converts this to a new
Xml document (with org.w3c.dom.Document headers etc).

CreateDocument(string

a_strXML) returns

XmlDocument

Reads XML data from the given file path and converts this to
a new Xml document (with org.w3c.dom.Document headers
etc).

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 159 of 181

CreateDocument() returns

XmlDocument
Creates a new (empty) Xml document (without
org.w3c.dom.Document headers).

SignDocument(Document,Pri

vateKey,X509Certificate[]

)

Signs XML document using the provided private key and
certificate chain.

Decode(string

encodedData) returns

byte[]

Decodes a base64 encoded string to a byte array.

Encode(byte[] data)

returns string
Encodes a byte array to a base64 encoded string.

FormatAsBase64String(stri

ng data)
Formats the given string into base64 formatted string.

DocumentToBytes(Document)

returns byte[]
Converts an XML Document object to a byte array.

GetContentInfo(byte[]

requestData, string OID)

returns byte[]

Constructs a ‘Content Info’ element.

GetSignedData(

string contentType,

byte[] scvpReqData,

AsymmetricKeyParameter

privateKeyParam,

X509Certificate

signingCert,

IX509Store certStore)

returns byte[]

Constructs a ‘CMS Signed Data’ object.

GetDocumentBuilderFactory

()
Returns the DocumentBuilderFactory object

GetTransformerFactory() Returns the TransformerFactory object

ConvertXmlCalendar(Calend

ar)
Converts the XMLGregorianCalendar to Calendar

GetSubjectAttributeValue(

string subject, string

attribute) returns string

Returns the ‘Subject DN’ attribute from the subject e.g.
CN,OU,O.

ConvertDateToString(Date) Converts the Date object into String.

ConvertStringToDate(strin

g)
Converts the String into Date object.

GetFormattedDN(string DN) Converts the given ‘SubjectDN’ into formatted ‘SubjectDN’.

IsArchiveDataSigned(Docum

ent)
Checks whether the data to be archived is signed or not.

RemoveSignatureElementFro

mXML(Document)
Removes the signature element from the given XML
document.

ReadFile(string

filePath) returns byte[]
Reads the file from the given path and returns a byte array.

ReadStream(Stream

stream) returns byte[]
Reads the file from the given file stream and returns a byte
array.

WriteToFile(byte[] data,

string filePath)
Writes the byte array to the provided file path.

WriteToFile(XmlDocument

xmlDoc, string filePath)
Writes an Xml document to the provided file path.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 160 of 181

WriteToStream(byte[]

data, Stream stream)
Writes the byte array to the provided file stream.

WriteToStream(XmlDocument

xmlDoc, Stream stream)
Writes an Xml document to the provided file stream.

ConvertToDoc(byte[] data)

returns byte[]
Converts byte array data into XML document.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 161 of 181

19 ADSS Signing Service - Use Cases and Schema
The following sections provide insight into the possibilities available for creating signatures with the
Signing Service. Additionally, for the Ascertia proprietary protocols (e.g. Empty Signature Field
Creation, Document Hashing and Assembly) a description of the XML protocol schemas is provided.

19.1 Server-side Document Signing
The ADSS Server Signing Service provides flexible features for signing documents using server stored
keys or keys held by a desktop client. The facilities provided are:

 Server-side signing – using the web services APIs

 Client-side signing – using the Go>Sign Desktop with browser based clients OR with thick client
applications along with web service APIs for server-side processing

This section describes server-side signing and subsequent sections describe the client-side signing
process.

When a business application needs data or a document to be signed, it calls ADSS Server requesting
it to sign the data using a specified signing certificate and associated private key held by ADSS Server.
The application supplies the user’s authorisation code for the signing certificate (not required if an HSM
is used).

ADSS Server checks the authorisation code is correct for the target certificate, signs the data/document
and returns the signature or signed document in its response back to the application. The certificate
used to sign the document may be associated with an end-user or may be a corporate-level certificate
registered in the ADSS Key Manager section. Note that if the signing certificate is not associated to an
end-user i.e. present in Key Manager then the authorisation code is not required at all as such a
certificate is not tied with any end-user but assigned to business applications.

If PDF signatures are to be created, then the signature appearance is defined within the signature profile
created on ADSS Server or is fully configurable by application call parameters sent in the request
message. The signing process is illustrated below:

19.2 Client-Side Document Signing
Signing keys are often held in secure tokens such as a smart card, a USB token, or a soft token, under
the direct control of the user. In this case, as the signing key is available at the user end rather than on
the ADSS Server, this means the signature must be created at the client-side. These keys can be
accessed to sign documents via the Windows key store interface (Windows CAPI) or the PKCS#11
interface for other key stores like for Firefox or other browser types.

To perform client side document signing, Go>Sign Desktop and ADSS Go>Sign Service are used. For
further details about how to use Go>Sign Desktop and ADSS Go>Sign Service refer to the Go>Sign
Developers Guide in the ADSS Client SDK package. The source code for the Go>Sign demonstration
application is also available in ADSS Client SDK.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 162 of 181

19.3 Creating an Empty Signature Field in PDF Documents
In some instances an empty signature field may need to be inserted within a PDF document – for
example when creating additional signature fields prior to certifying (and thus locking) a PDF. To
achieve this, a business application can call ADSS Server requesting it to create an empty signature
field within a target PDF document.

19.3.1 Empty Signature Field Creation

The purpose of the Empty Signature Field Creation service is to generate empty signature fields in a
target PDF document. Optionally it is possible to use this service to sign or certify an empty signature
field within the document.

The Empty Signature Field web service interface has a flexible XML schema, a summary of which is
shown in the following diagram. For a detailed description refer to the XML Schema file signing.xsd
provided within the ADSS Server software installation:

19.3.2 Empty signature field generation request

Setting these elements can be accomplished using the API calls described in section 4.6.

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed
Values

EmptySigFiel
dRequest (M)
- (Container)

This is the top level element of the Empty Signature Field creation request
message. It has three child elements named Document, SigningInfo,
OriginatorInfo and two attributes RequestID, ProfileID.

 OriginatorInfo
(O) -
(Container)

Contains details of the entity that is sending the request.

OriginatorID (M) - (String) Contains a unique ID for
originator. This must be registered within ADSS Server
and if client-authenticated TLS is used then it must
match the Common Name within the client TLS

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 163 of 181

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed
Values

Certificate. If the OriginatorID is not registered, the
request will be rejected.

 SigningInfo (O)
- (Container)

Contains details of profile attributes and signing certificate
details used to sign the PDF. Signing is carried out once the
empty fields are created within the PDF document.

ProfileID (O) - (anyURI) Contains the ProfileID used by the
ADSS Signing Service to sign the empty field(s) in the PDF.

ProfileAttribute (O) - (Container) - (Multiple) Contains
Profile attribute(s) and values to be overridden during
processing by ADSS Server. The list of possible profile
attributes that can be altered from the default values in the
ADSS profile is:

SIGNING_REASON (O) - (String) Specifies signing
reason, e.g. “I approve this document”

SIGNING_LOCATION (O) - (String) Specifies the
location data, e.g. “London”

SIGNING_FIELD (O) - (String) Specifies the name of the
blank signature field to be signed, e.g. “Sign-1”

SIGNING_AREA (O) - (String) Specifies the page area on
which the signature should be placed (applicable only if visible
signatures are being used). Use the following values to specify
the document location:

1 for TOP LEFT

2 for TOP RIGHT

3 for CENTER

4 for BOTTOM LEFT

5 for BOTTOM RIGHT

SIGNING_PAGE (O) - (String) Specifies the page on
which the signature should be placed (applicable only if
document allows visible signatures) e.g. 10

VISIBILITY (O) - (String) This flag indicates whether the
signature should be visible or invisible. Use TRUE for a visible
signature and FALSE for an invisible signature.

CONTACT_INFO (O) - (String) Specifies contact
information of the document signer e.g. phone number, email
address, postal address, etc.

HAND_SIGNATURE (O) - (Base64) Image to be used as
a hand signature.

COMPANY_LOGO (O) - (Base64) Image to be placed as
company logo

The following figure shows a signature appearance with the
above elements set. Note the contact information is only
shown when reviewing the signature properties:

DOCUMENT_SIGNATURE_RELATIONSHIP (O) -
(String) This is not applicable.

Configurable

Company Logo

Configurable

Hand-signature

image

Configurable

Signature

details

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 164 of 181

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed
Values

OriginatorKeyInfo (O) - (Container) Provides details of
the certificate alias to be used to sign the target document.
The following can be specified for the signing certificate.

Alias (O) - (String) The Certificate Alias to be used for
signing the document (must already be registered within
ADSS Server)

Password (O) - (String) The software key store password
if soft keys are being used for an end-entity. Note that if the
keys are server generated keys and are not end-entity keys,
i.e. they are generated manually in Key Manager then the
password is not required.

The Alias element must be set to sign a signature field
although it is marked as optional in the protocol.

 Document (M) - (Base64) Contains the Base64 encoded document in which
empty signature fields are to be created.

RequestID (O) - (String) Contains a unique identifier assigned by the requesting
application. This will be returned in the ADSS Server response.

 ProfileID (O) - (anyURI) Contains the signing ProfileID to be used by ADSS
Server for empty signature field generation. The ProfileID must be registered within
ADSS Server. If it is not present then the default ProfileID will be used. See the
ADSS Server Admin Manual for details on how to configure profiles. Note that empty
fields are created first before the SigningInfo > ProfileID is used for signing the PDF
(if used). Also the empty fields are only generated if XML based preferences are
used in the profile.

19.3.3 Empty Signature Field Response

Retrieving information from these elements can be accomplished using the API calls described in
section 4.6.

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed
Values

EmptySigFiel
dResponse
(M) -
(Container)

This is the top level element. It has three child elements named Message,
Document, ResponseStatus and two attributes RequestID, ProfileID. This is used
to receive a PDF with empty (optionally signed) fields from ADSS Server.

 Message (O) - (String) Contains the description of any error that occurred at
ADSS Server while processing the request.

 Document (O) - (Base64) Contains a PDF document formed after generating
the empty field signature and optionally signing/certifying them.

 ResponseStatus (M) - (ResponseStatusEnum) Provides success or failure
status information for the request. Possible values are:

- SUCCESS

- FAILED

 RequestID (O) - (String) Contains the unique RequestID identifier sent in the
EmptySigFieldRequest message to ADSS Server.

 ProfileID (O) - (anyURI) Contains the ProfileID used by ADSS Server for empty
signature field creation. This can either be the ProfileID in the request or if not
provided the default ProfileID is used.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 165 of 181

19.4 Document Hashing and Assembly
When a business application wishes to hash data it calls ADSS Server, requesting it to hash the
specified document or data. The most likely use of this call is to work in client-side signing mode when
the applet/desktop application requires server-side hashing. In such scenarios once the hash is
returned, the application interacts with the Go>Sign components to have this hash signed.

For PDFs the next stage of the signing process is to embed the signature within the PDF document.
To do this the application makes an Assembly request to ADSS Server, sending the signature object
so that it can be correctly embedded within the document. The process flow is similar to that shown in
the previous diagrams.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 166 of 181

19.5 Document Hashing
An application can use the Document Hashing Service to send a PDF document to ADSS Server and
have the Hash value returned. The Hashing web service interface is based on a flexible XML schema.
A summary of the XML elements used in the hashing service requests and responses is shown in the
following diagram. For a detailed description refer to the XML Schema file signing.xsd within the ADSS
Client SDK download. The high level structure of the schema is as follows:

19.5.1 Hashing Request

Setting these elements can be accomplished using the API calls described in section 0.

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed
Values

HashRequest
(M) - (Container)

This is the top level element of the Hashing Request message. It has six child
elements named Document, ProfileAttrbutes, UserCertificateChain, RequestID,
ProfileID and OriginatorInfo

 OriginatorInfo (M) -
(Container)

Contains details of the entity that is sending the request.

OriginatorID (M) - (String) Contains a unique ID for
originator. This ID must be registered within ADSS Server
and if client-authenticated TLS is used then it must match
the Common Name within the client TLS Certificate. If the
OriginatorID is not registered, the request will be rejected.

 Document (M) - (Base64) Contains a Base64 encoded PDF document.

 RequestID (O) - (String) Contains a unique identifier assigned to the
HashingRequest. This value is returned in the ADSS Server response.

 ProfileID (O) - (anyURI) Contains the ProfileID to be used by ADSS Server for hash
generation. The ProfileID must be registered within ADSS Server. If it is not, the
default ProfileID will be used. Refer to the ADSS Server Admin Manual for more
details on how to configure profiles.

 UserCertificateChain (O) - (Base64) Contains a Base64 encoded certificate chain
for the signer. This certificate chain is embedded in the PDF document before
hashing as mandated in the PDF signing specifications. The chain should contain
at least the end-entity signing certificate so that the certificate information is set in
signature properties. If more than one certificate is specified then the first certificate
will be used and rest will be ignored.

Note: For the generation of PDF signatures, this element is REQUIRED.

 ProfileAttributes
(O) - (Container)

The values inside the ProfileAttributes are embedded in the
PDF document before the hashing. The list of profile attributes
that can be altered from the default values (if allowed in the
profile) are:

SIGNING_REASON (O) - (String) Specifies the signing
reason e.g. “I approve this document”

SIGNING_LOCATION (O) - (String) Specifies the location
where the document is being signed e.g. “London”

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 167 of 181

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed
Values

SIGNING_FIELD (O) - (String) Specifies the name of an
existing blank signature field to be signed

SIGNING_PAGE (O) - (String) Specifies the page on which
the signature should be placed (applicable only if the
document allows visible signatures) e.g. 10

SIGNING_AREA (O) - (String) Specifies the page area on
which the signature should be placed (applicable only if visible
signatures are being used). The following values specify the
location:

1 for TOP LEFT

2 for TOP RIGHT

3 for CENTER

4 for BOTTOM LEFT

5 for BOTTOM RIGHT

VISIBILITY (O) - (String) This flag indicates whether the
signature should be visible or invisible. Use TRUE for a visible
signature and FALSE for an invisible signature (applicable
only if the document type supports visible signatures)

CONTACT_INFO (O) - (String) Specifies contact information
for the signer e.g. a telephone number, email address, street
address.

HAND_SIGNATURE (O) - (Base64) An image to be placed
as a hand signature (applicable only if the document type
supports visible signatures)

COMPANY_LOGO (O) - (Base64) An image to be placed as
a company logo (applicable only if the document type supports
visible signatures). The following figure shows a signature
appearance with various elements set. Note the contact
information is not visible on the document but can be seen
when viewing the signature properties:

 DOCUMENT_SIGNATURE_RELATIONSHIP (O) - (String)
This is not applicable.

19.5.2 Hashing Response Element

Retrieving information from these elements can be accomplished using the API calls described in section 0.

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

HashResponse (M) -
(Container)

This is the top level element of the Hashing Response message. It has three
child elements named DocumentID, Message and Hash and three attributes
named ResponseStatus, RequestID and ProfileID.

 Message (O) - (String) Contains the description of any error that occurred
whilst processing the Hashing Request.

 Hash (O) - (Base64) Contains the resultant hash of the document.

 DocumentID (O) - (String) Contains a unique identifier assigned to the
document received by ADSS Server. This DocumentID must be provided
within a Document Assembly request if a PKCS#7 signature object is to be

Configurable

Company Logo

Configurable

Hand-signature

image

Configurable

Signature

details

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 168 of 181

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

sent back to ADSS Server, e.g. for embedding a signature created by the
Go>Sign Desktop.

Note: DocumentID is always returned by ADSS Server and the calling
application must use this in any subsequent assembly request.

 ResponseStatus (M) - (ResponseStatusEnum) Provides information on
whether the request was processed successfully or if it failed. Possible
values are:

SUCCESS

FAILED

 RequestID (O) - (String) Contains the same unique identifier sent earlier in
the HashingRequest > RequestID received by ADSS Server.

 ProfileID (O) - (anyURI) Contains the ProfileID used by ADSS Server for
hash generation. This can either be the ProfileID provided in the request or
it is set to the default ProfileID.

19.6 Signature Assembly
The Signature Assembly Service works in conjunction with the Hashing service. The purpose of the
Assembly Service is to provide PKCS#7 signatures generated by the Go>Sign Desktop so that final
assembly of a document can be completed.

Currently the Assembly Service only supports PKCS#7 signatures and PDF documents. To use the
Assembly Service, the application should first call the Hashing Service to get the Hash value and
DocumentID, then have this Hash signed externally using the Go>Sign Desktop or another signing
facility. The generated PKCS#7 plus DocumentID then has to be sent to ADSS Server for the PKCS#7
signature to be embedded within the document.

The Assembly Service interface uses a flexible XML Schema an overview of which as used in the
Assembly Service request and response messages is shown in the following diagram. For a detailed
description refer to the XML Schema file signing.xsd provided within the ADSS Client SDK:

Assembly Request

AssemblyRequest
OriginatorInfo
 Originator ID
Signature
Document ID
? ProfileID
? RequestID

Assembly Response

AssemblyResponse
ResponseStatus
? Message
? Document
? ProfileID
? RequestID

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 169 of 181

19.6.1 Assembly Request

Setting these elements can be accomplished using the API calls described in section 0.

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

AssemblyRequest (M) -
(Container)

This is the top level element of the Assembly request message. It has three
child elements named DocumentID, Signature and OriginatorInfo and two
attributes RequestID and ProfileID. It is used to send the PKCS7 signature
created by signing the hash received earlier from the ADSS Signing Service.

 OriginatorInfo (O) -
(Container)

Contains details of the entity that is sending the
request.

OriginatorID (M) - (String) Contains a unique ID
for the originator. The unique ID must be
registered within ADSS Server and if client-
authenticated TLS is used then it must match the
Common Name within the client TLS Certificate.
If the OriginatorID is not registered, the request
will be rejected.

 Signature (M) - (Base64) Contains the Base64 encoded PKCS#7 signature
that is to be embedded inside the document.

 DocumentID (M) - (String) Contains the unique identifier assigned earlier
within the Hashing response. The same DocumentID must be sent to ADSS
Server for successful document assembly.

 RequestID (O) - (String) Contains a unique identifier assigned to the
AssemblyRequest by the application. This will be returned in the ADSS
response.

 ProfileID (O) - (anyURI) This is not applicable and reserved for future use.

19.6.2 Assembly Response

Retrieving information from these elements can be accomplished using the API calls described in
section 0.

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

AssemblyResponse (M)
- (Container)

This is the top level element of the Assembly response message. It has three
child elements named Message, Document and ResponseStatus and two
attributes RequestID and ProfileID.

 Message (O) - (String) Contains the description of any error that occured
within ADSS Server during the Assembly request processing.

 Document (O) - (Base64) Contains the final signed document formed by
embedding the signature within the specified document.

 ResponseStatus (M) - (ResponseStatusEnum) Provides success or
failure status information for the request. Possible values are:

SUCCESS

FAILED

 RequestID (O) - (String) Contains the same unique identifier sent earlier in
the AssemblyRequest > RequestID received by ADSS.

 ProfileID (O) - (anyURI) Contains the ProfileID used by ADSS Server for
assembly. This is either the ProfileID provided in the request or the default
ProfileID.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 170 of 181

20 ADSS Certification Service – Use Case Overview
The following sections provide an insight into the possibilities available for certificate creation, renewal
and key authorisation code update. Additionally, when the request is made using the Ascertia proprietary
protocol (as opposed to CMC), descriptions of the certificate request/response XML protocol schemas
are provided.

20.1 Generating / Registering a Key Pair and Certificate
This section applies only to multi-user server-side signing mode. When an end-user requires a key pair
and certificate then the application needs to send a certificate creation request to ADSS Server. The
server generates the key pair and obtains a certificate using either its embedded local CA or by
communicating with an external CA. The keys and certificates generated can now be used to sign
documents or data.

If the business application has already generated/obtained a key pair and a certificate signing request
(CSR or PKCS#10) then this can also be sent to ADSS Server for certification. Alternatively if the key
pair have already been generated and certified then the complete package (in the form of a PKCS#12
object) can still be registered with ADSS Server, e.g. for server-side signature creation.

A high-level review of the process involving the user, business application, ADSS Server and the CA
system is illustrated below:

20.2 Renewing a Key pair and Certificate
ADSS Server provides various details about digital certificates in its response data. One attribute
provides information on certificate expiry and this allows business applications to track impending expiry
dates of client certificates. The business application has the ability therefore to check whether a
certificate should be renewed. For example if a certificate has less than say 14 days before its expiry
date then the application may choose to send a certificate renewal request to the ADSS Server. This
enables a smooth migration from one key-pair to another avoiding a re-registration process and makes
security services more user-friendly.

When ADSS Server receives a renewal instruction it generates a new key pair and then certifies the
new public key using the appropriate CA. The old key pair and certificate are deleted. The new certificate
is generated according to the ADSS Server policy sent in the request (or the default certification policy).
ADSS Server also supports renewing of certificates using existing key pairs:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 171 of 181

20.3 Retrieving Private Key (PKCS#12 object) and Certificate
The business application can also request ADSS Server to return the PKCS#12 and the associated
certificate chain when required by the business application. The business application itself or a client
side plug-in (e.g. Go>Sign Desktop) can then open the PKCS#12 using a locally provided password to
extract the Private Key and then use the Private Key for client side signing operations.

20.4 Deleting a Key pair and Certificate
A business application can delete an existing key and certificate by sending a certificate deletion request
to the ADSS Server. After authenticating the client, ADSS Server deletes the key pair and the certificate:

20.5 Changing an end-user key Authorisation Code
An Authorisation Code protects a user’s private signing key from unauthorised use. The Authorisation
code should only be known to the owner of the private signing key, such that only the owner can use
their key on ADSS Server for signing purposes. For certain systems the business application may have
strongly authenticated the user using a time-based token or mobile phone code etc. and thus either
release the unique authorisation code from a user information database or perhaps use a single code
for all users relying on the application security to protect all such transactions.

Depending on the application, clients may be able to change their authorisation code from time to time,
e.g. routinely as part of their security policy or as required.

To change an authorisation code, the current code must be confirmed and a new authorisation code
entered – all under the control of the business application. The application makes the call to ADSS
Server requesting this change. The authorisation code is checked with and applied to a PKCS#12 (PFX)
file stored within the ADSS Server database. ADSS Server first verifies that the existing authorisation
code is valid before changing the code to the new value.

Note that the authorisation code can only be changed when private signing keys are held in software
and not when an HSM is used. The reason for this is that when an HSM is used, PKCS#12 files are
not required or maintained by ADSS Server:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 172 of 181

20.6 Operation of the Certification Service
The Certification Service enables applications to register entities and create certificate(s) on their behalf.
Entities can be servers, applications or end-users that wish to be able to sign data using server-side
signing processing (not zero-footprint client-side signing). The registration process is:

 Generate RSA signing key pairs according to a pre-defined policy. For enhanced security ADSS
Server supports Hardware Security Modules (HSMs)

 Generate a PKCS#10 certificate request for the public key and automatically post this to a configured
Certificate Authority (CA) based on a specified certification policy OR from the built-in ADSS
Certification Service

The ADSS Certification Service is based on a flexible XML schema. An overview of the XML elements
used in the ADSS Certification Service request and response messages are provided below. For a
detailed description refer to the XML Schema file certification.xsd provided within the ADSS Client
SDK download.

20.6.1 Certification request

Setting these elements can be accomplished using the API calls described in section 6.4.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 173 of 181

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

CertificateRequest (M) -
(Container)

The top level element of the Certification Request message. It has two
attributes named RequestID and ProfileID and five child elements named
OriginatorInfo, RequestType, ProfileAttributes, CertificateInfo and
RespondWith.

 OriginatorInfo (M) -
(Container)

Contains details of the entity that is sending the

request.

OriginatorID (M) - (String) Contains a unique ID
for the originator. The unique ID must be
registered within ADSS Server and if client-
authenticated TLS is used then it must match the
Common Name within the Client’s TLS Certificate.
If the OriginatorID is not registered, the request will
be rejected.

 RequestType (M) - (Enumeration) Identifies the purpose of the request. The
following set of values can be used for this element:

CREATE: To create a new key pair and certificate.

RENEW to renew the certificate (the previous certificate is deleted).

DELETE to delete the certificate

CHANGE_PASSWORD to change the password of the PFX private key file
held on the ADSS Server

RECOVER_KEY to recover the issued certificates and PKCS#12 object stored
in the ADSS Server database

REVOKE to revoke the certificate

 RequestID (O) - (String) This attribute helps to uniquely identify a certification
request. Any arbitrary string can be used as the value of this attribute. This is
expected in the response back from ADSS Server.

 ProfileID (O) - (anyURI) This attribute is used to identify a certification profile
that ADSS Server must use to process this request. See the ADSS Server
Admin Manual for further details on how to configure certification profiles. The
value of this attribute is of the form adss:module:cert:001. If a profile is not
identified then the ADSS Server default certification ProfileID is used.

 ProfileAttributes (O) -
(Container)

Used to customise the profile that will be used to
process this certification request. This element
provides the flexibility to override the attributes of
a certification profile. ADSS Server uses the
values provided within this element instead of
profile default values only if the profile allows these
attributes to be over-ridden (see the ADSS Server
Admin Guide for details of how to lock the default
settings).

ProfileAttribute (O) - (Container) - (Multiple)
Contains Profile attribute(s) and values to be used
as override values by ADSS Server when
processing the request. The following are the
Profile Attributes that can be over-ridden:

SUBJECT_DN: Subject Distinguished Name of
the certificate to be generated for the user e.g.
CN=Alice, OU=HR Dept, O=ACME, C=GB. Only
the following subject DN attributes: CN, G, SN, T,
OU, O, OI, C, L, S, E, SERIALNUMBER, B, ST, P,
EVL, EVS and EVC can be over-ridden.

KEY_SIZE: Size of the key pair to be generated in
bits (1024, 2048, 3072 and 4096 for RSA; 192,
224, 256, 384 and 521 for ECDSA).

KEY_TYPE: Type of the key pair to be generated
(RSA or ECDSA).

VALIDITY_PERIOD: Validity period of certificate
in numbers e.g. 12.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 174 of 181

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

VALIDITY_UNIT validity period unit of certificate
lifetime in 'MINS', 'HOURS', 'DAYS', 'MONTHS' or
'YEARS' e.g MONTHS.

VALID_TO: Expiry date of the certificate in string
format “yyyy-MM-dd'T'HH:mm:ss” e.g. 2020-
02-10T15:53:23

CA_ALIAS: An alias of the CA that ADSS Server
should use to certify the public key of the entity.
Refer to the ADSS Server Admin Guide for details
on CA aliases. Permitted values are:

 INTERNAL - specifies that the ADSS Server
internal CA service is to be used

 Any alias assigned to an external CA

 CertificateInfo (M) -
(Container)

This element is used to provide the certificate
specific data to ADSS Server. The list of certificate
info elements which can be provided in certificate
request is detailed below:

ALIAS (M) - (String) The alias of the certificate for
this certification request. ADSS Server will
generate the certificate using this ALIAS if this alias
is not already used for this particular OriginatorID.

PKCS_10 (O) - (byte[]) The PKCS10 sent in the
certification request contains the private key and
public key used to certify the certificate at ADSS
Certification Service.

PKCS7 (O) - (byte[]) The PKCS7 sent in the
certification request is used to store the certificate
at ADSS Certification Service.

PKCS12 (O) - (byte[]) The PKCS12 sent in the
certification request is used to store the private key
and certificate chain at ADSS Certification Service.

CERTIFICATE (O) - (byte[]) The certificate sent in
the certification request is used to store the
certificate at ADSS certification server or even use
to delete or revoke the certificate if request type is
"DELETE" or "REVOKE".

PASSWORD (M) - (String) Password of the PFX
or PKCS#12 private key file. If not provided in
Certificate CREATE or RENEW request then the
server assigns a secure password itself which can
later be retrieved by specifying PASSWORD in the
RespondWith element.

NEW_PASSWORD (O) - (String) New password
for the private key file. This is required only if the
RequestType is “CHANGE_PASSWORD”

REVOCATION_REASON (O) - (String)
Revocation reason provided in the certification
request to revoke certificate. This is required only
if the RequestType is “REVOKE”

INVALIDITY_DATE (O) - (Date) The date
provided in the request on which it is known or
suspected that the private key was compromised.
This is required only if the RequestType is
“REVOKE”

 RespondWith (O) -
(Container)

Used to specify the items the calling application
wants to receive within the certification web
service response message.

ResponseItem (O) - (Container) - (Multiple).
This element is used to specify the items the
calling application wants to receive within the

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 175 of 181

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

certification web service response message. The
list of items which can be requested are:

CERTIFICATE (Base64): The X509 certificate

PKCS_12 (Base64): The PKCS#12 private key
file

PKCS_7 (Base64): The PKCS#7 certificate chain

EXPIRY_DATE (String): The expiry date and time
of the certificate

The business application may wish to remember
some of these elements. For example a web
application may want to keep a local record of the
expiry dates of user certificates so that it can notify
users that their certificates need to be renewed.

PASSWORD (String): The server generated
password of the PKCS#12 object

An external CA must be able to process the certification request from ADSS Server. For
Windows 2003 CAs, a middleware module is provided that handles the dialogue between
ADSS Server and Windows CA. Read the ADSS Server installation Manual for details on how
to install and configure the Windows 2003 CA middleware module.

20.6.2 Certification Response

Retrieving information from these elements can be accomplished using the API calls described in
section 6.5.

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

CertificateResponse (M)
- (Container)

This is the top level element of Certification Response. It has three attributes
named ResponseStatus, RequestID and ProfileID and two child elements
named Message and ResponseData. The detail of each element is provided
below.

 ResponseStatus (M) - (Enumeration) Provides information regarding
whether the request was processed successfully or failed. Possible values
are:

SUCCESS

FAILED

PENDING

Note: PENDING response status is returned only when the certification
request is to be manually reviewed and approved by the Admin. The
RECOVER_KEY request should be used to retrieve the certificate once it
approved and issued by the Certification Service.

 RequestID (O) - (String) This attribute helps to uniquely identify a
certification request. If included in the response, the value for this attribute
is taken exactly as from the corresponding certification request message.

 ProfileID (O) - (anyURI) This attribute identifies the certification profile
ADSS Server used to process this request. This can either be the ProfileID
provided in the request or, if not provided, then the default ProfileID.

 Message (O) - (String) If the value of the ResponseStatus attribute is
FAILED then this element contains the failure reason. The failure reason is
a string description of the error encountered by ADSS Server while
processing the request.

 ResponseData (O) -
(String)

If the value of the ResponseStatus attribute is
SUCCESS, then this contains the RespondWith
items requested in the corresponding request.

 ResponseItem (O) - (Container) - (Multiple)
This element is used to specify the items the
calling application requested and the

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 176 of 181

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

corresponding values. The list of items that can
be requested are:

CERTIFICATE (Base64) The X509 certificate

PKCS_12 (Base64) The PKCS#12 private key
file

PKCS_7 (Base64) The PKCS#7 certificate
chain

EXPIRY_DATE (DateTime) The expiry date of
the certificate

If a value is not available or ADSS Server cannot
produce the value then it is not included in the
response

PASSWORD (String): The server generated
password of the PKCS#12 object

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 177 of 181

21 ADSS RA Service – Use Case Overview
The following sections provide an insight into the possibilities available for certificate creation, revocation
and status checking. Additionally, when the request is made using the Ascertia proprietary protocol,
descriptions of the certificate request/response XML protocol schemas are also provided.

21.1 Generating a Key Pair and Certificate
When an end-entity requires a key pair and certificate then the business application sends a certificate
creation request to ADSS RA Server. The RA server obtains a key pair and the associated certificate
from the ADSS CA Server. The keys and certificates generated can now be used to sign documents or
data.

If the business application has already generated/obtained a key pair and a certificate signing request
(CSR or PKCS#10) then this can also be sent to ADSS RA Server for certification.

A high-level review of the process involving the user, business application, ADSS RA Server and ADSS
CA Server is illustrated below:

21.2 Status of a Certificate
The business application can also request ADSS RA Server to return the status of the requested
certificate and the associated certificate chain:

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 178 of 181

21.3 Revoking a Certificate
A business application can revoke an existing certificate by sending a certificate revocation request to
the ADSS RA Server. After authenticating the client, ADSS Server revokes the the relevant certificate:

21.4 Operations of the RA Service
The RA manages all requests from end-entities that include human users, servers or devices that
require X.509 digital certificates from the defined Certification Authorities (CAs) which actually issue
these certificates.

The ADSS RA Service is based on a flexible XML schema. An overview of the XML elements used
in the ADSS RA Service request and response messages are provided below. For a detailed
description refer to the XML Schema file adss-ra.xsd provided within the ADSS Client SDK download.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 179 of 181

21.4.1 RA Request

Setting these elements can be accomplished using the API calls described in section 14.3.

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

CertificateRequest (M) -
(Container)

The top level element of the Certification Request message. It has three
attributes named RequestID, ProfileID and TransactionID and seven child
elements named EntityType, RequestType, OriginatorID, UserName,
EmailAddress, ChallengePassword and CertificateInfo.

 RequestType (M) - (Enumeration) Identifies the purpose of the request. The
following set of values can be used for this element:

CREATE: To create a new key pair and certificate.

REVOKE: To revoke the certificate (that already issued).

STATUS: To check request status whether the certificate is generated,
pending or declined

 OriginatorID (M) - (String) Contains details of the entity that is sending the

request. A unique ID for the originator. The unique ID must be registered
within ADSS Server and if client-authenticated TLS is used then it must match
the Common Name within the Client’s TLS Certificate. If the OriginatorID is
not registered, the request will be rejected.

 RequestID (O) - (String) This attribute helps to uniquely identify a RA request.
Any arbitrary string can be used as the value of this attribute. This is expected
in the response back from ADSS RA Server.

 ProfileID (O) - (anyURI) This attribute is used to identify a RA profile that
ADSS RA Server must use to process this request. See the ADSS RA Server
Admin Manual for further details on how to configure RA profiles. The value
of this attribute is of the form adss:ra:profile:001. If a profile is not identified
then the ADSS Server default RA ProfileID is used.

 TransactionID (O) – (String) This attribute is used to uniquely identify a
certificate request in asynchronous mode.

 UserName (O) – (String) This contains the user name of the request.

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 180 of 181

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

 EmailAddress (O) – (String) This contains the EmailAddress of the
requested user. This email address is used for further correspondence with
the user.

 ChallengePassword (O) – (String) This contains the device password to
uniquely identify the registered device.

 CertificateInfo (O) -
(Container)

This element is used to provide the certificate
specific data to ADSS RA Server. The list of
certificate info elements which can be provided in
certificate request is detailed below:

ALIAS (M) - (String): The alias of the certificate
for this certification request. ADSS RA Server will
generate the certificate using this ALIAS if this
alias is not already used for this particular
OriginatorID.

PKCS12Password (O) - (String) Password of the
PFX or PKCS#12 private key file. This is required
only if the key-pair is generated at server

SubjectDN (O) – (DistinguishedName): Subject
Distinguished Name of the certificate to be
generated for the user e.g. CN=Alice, OU=HR
Dept, O=ACME, C=GB. Only the following subject
DN attributes: CN, OU, O, C, L, S, E, SN, B, ST,
P, EVL, EVS and EVC are supported and can be
over-ridden depending upon the RA profile
settings.

PKCS10 (O) –(base64Binary) contains PKCS10
/CSR bytes

RevocationReason (O) – (Enumeration)

If the certificate Request type is Revoke then this
contains the revocation reason value.

The following set of values can be used for this
element:

 unspecified

 keyCompromise

 cACompromise

 affiliationChanged

 superseded

 cessationOfOperation

 certificateHold

 removeFromCRL

 privilegeWithdrawn

 aACompromise

HoldInstructionCode (O) – (Enumeration)

The following set of values can be used for this
element:

 id-holdinstruction-none

 id-holdinstruction-callissuer

 id-holdinstruction-reject

ADSS Server - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 181 of 181

21.4.2 RA Response

Retrieving information from these elements can be accomplished using the API calls described in
section 14.3.8

XML element name (M: Mandatory, O: Optional) - Data-type - Description/Allowed Values

CertificateResponse (M)
- (Container)

This is the top level element of Certification Response. It has four attributes
named ResponseStatus, RequestID, ProfileID and TransactionID and three
child elements named ErrorCode, Message and ResponseData. The detail
of each element is provided below.

 ResponseStatus (M) - (Enumeration) Provides information regarding
whether the request was processed successfully or failed. Possible values
are:

 SUCCESS

 FAILED

 PENDING

 DECLINED

 RequestID (O) - (String) This attribute helps to uniquely identify a request.
If included in the response, the value for this attribute is taken exactly as
from the corresponding request message.

 ProfileID (O) - (anyURI) This attribute identifies the RA profile ADSS Server
used to process this request. This can either be the ProfileID provided in
the request or, if not provided, then the default ProfileID.

 Message (O) - (String) If the value of the ResponseStatus attribute is
FAILED then this element contains the failure reason. The failure reason is
a string description of the error encountered by ADSS Server while
processing the request.

 ResponseData (O) -
(String)

If the value of the ResponseStatus attribute is
SUCCESS then this contains the following
items.

 CERTIFICATE (Base64) The X509 certificate

PKCS12 (Base64) The PKCS#12 private key
file

PKCS7 (Base64) The PKCS#7 certificate chain

**** End of Document ****

