

© Ascertia Limited. All rights reserved.

This document contains commercial-in-confidence material. It must not be disclosed to any third

party without the written authority of Ascertia Limited.

Commercial-in-Confidence

A D S S G o > S i g n

D e v e l o p e r s G u i d e

AS CE RT IA LT D

S E P T E M B E R 2 0 2 1

D o c u m e n t V e r s i o n - 6 . 9 . 0 . 1

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 2 of 33

CONTENTS

1 INTRODUCTION ... 3

1.1 SCOPE ... 3
1.2 INTENDED READERSHIP .. 3
1.3 CONVENTIONS ... 3
1.4 TECHNICAL SUPPORT ... 3

2 ADSS GO>SIGN SERVICE OVERVIEW .. 4

2.1 GO>SIGN CLIENT APPS .. 5
2.2 GO>SIGN VIEWER .. 6

3 ADSS GO>SIGN SERVICE INTEGRATION .. 8

3.1 GO>SIGN SERVICE REQUEST (JSP EXAMPLE) ... 14
3.2 GO>SIGN SERVICE REQUEST (ASP.NET / C# EXAMPLE) ... 15
3.3 HOW BUSINESS APPLICATIONS RECEIVE SIGNED DOCUMENTS ... 16
3.4 LANGUAGE PREFERENCE SETTINGS .. 19

4 GO>SIGN CLIENT APPS JAVASCRIPT LIBRARY ... 20

4.1 PRE-PROCESSING FUNCTIONS .. 20
4.2 PROCESSING FUNCTIONS .. 22
4.3 POST PROCESSING FUNCTIONS .. 22

5 GO>SIGN VIEWER JAVASCRIPT FUNCTIONS ... 23

6 EXAMPLE SCENARIOS & DEMOS FOR GO>SIGN SERVICE ... 25

6.1 DOCUMENT SIGNING DEMOS .. 26
6.2 CERTIFICATION DEMOS .. 30

7 JAVA GO>SIGN DEMO – DEPLOYMENT & CONFIGURATION .. 32

7.1 DEPLOYING THE JAVA DEMO APPLICATION.. 32

8 NET GO>SIGN DEMO – DEPLOYMENT & CONFIGURATION .. 33

8.1 DEPLOYING THE .NET DEMO APPLICATION ON IIS 7.5 OR HIGHER... 33

FIGURES
FIGURE 1 - ADSS GO>SIGN SERVICE & BUSINESS APPLICATION INTERACTION .. 4

FIGURE 2 - GO>SIGN VIEWER EXAMPLE ... 6

FIGURE 3 - GO>SIGN DEMO PARKING PAGE .. 26

TABLES

TABLE 1 - ADSS GO>SIGN SERVICE HTTP REQUEST HEADERS ... 14

TABLE 2 - HTTP REQUEST HEADERS TO INITIATE THE GO>SIGN REQUEST ... 16

TABLE 3 - HTTP RESPONSE HEADERS FROM GO>SIGN SERVICE .. 17

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 3 of 33

1 Introduction

1.1 Scope
ADSS Go>Sign Service enables business applications to digitally sign documents using local or
server held keys by use of Go>Sign Desktop application. In addition, it provides a powerful
document viewer to display, navigate, and sign PDF documents. Go>Sign Service makes it easy to
integrate Go>Sign Desktop into business applications. This document provides information on how
to integrate ADSS Go>Sign Desktop in your business applications and take advantage of Go>Sign
Service.

1.2 Intended Readership
This guide is intended for developers who are integrating business applications with ADSS Go>Sign
Service. The document assumes a reasonable knowledge of web application development,
specifically JavaScript and HTML.

1.3 Conventions
The following typographical conventions are used in this guide to help locate and identify
information:

 Bold text identifies menu names, menu options, items you can click on the screen, file
names, folder names, and keyboard keys.

 Courier New font identifies code and text that appears on the command line.

 Bold Courier New identifies commands that you are required to type in.

1.4 Technical support
If Technical Support is required, Ascertia has a dedicated support team providing debugging
assistance, integration assistance and general customer support. Ascertia Support can be
accessed in the following ways:

Website https://www.ascertia.com

Email support@ascertia.com

Knowledge Base https://www.ascertia.com/products/knowledge-base/adss-server/

FAQs http://faqs.ascertia.com/display/ADSS/ADSS+Server+FAQs

In addition to the free support service describe above, Ascertia provides formal support agreements
with all product sales. Please contact sales@ascertia.com for more details.

A Product Support Questionnaire should be completed to provide Ascertia Support with further
information about your system environment. When requesting help, it is always important to
confirm:

 System Platform details.

 ADSS Server version number and build date.

 Details of specific issue and the relevant steps taken to reproduce it.

 Database version and patch level.

 Product log files

mailto:support@ascertia.com
mailto:sales@ascertia.com

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 4 of 33

2 ADSS Go>Sign Service Overview
ADSS Go>Sign Service empowers business applications to perform document signing on user’s
machines using the credentials held either locally by the user or on the server.

In addition, ADSS Go>Sign Service enables business applications to display PDF documents in a
secure manner using a server-side HTML-based Go>Sign Viewer. It is fully integrated with Go>Sign
PDF signing capabilities. This viewer allows users to view a document in flattened mode thus
providing a “What You See Is What You Sign (WYSIWYS)” property.

Figure 1 - ADSS Go>Sign Service & Business Application Interaction

The diagram shows how ADSS Go>Sign Service and business application interact with each other.
The high-level process is as follows:

 An application web page sends a request to the ADSS Go>Sign Service specifying which
profile it wishes to use, the data to be signed and other optional parameters.

 The ADSS Go>Sign Service receives the request and responds to web page with the
relevant JavaScript code.

 The web page receives the JavaScript code and embeds it ready for the user.

 If the document is PDF or Word format and viewing has been requested, then the user can
see the document and sign it using either locally-held or server-held signing key. If the
document is another type or viewing was not requested, then the application must take
responsibility for informing the user what it is that they are about to sign and Go>Sign asks
the user to sign.

 As part of the signing process, ADSS Go>Sign Service can use the backend ADSS Server
Services, to perform various tasks including creating server-side signatures, verify local
signatures created by the user and to enhance basic signatures into long-term signature
formats. Furthermore, if Go>Sign Service is used for key generation and certification, then
ADSS Server can issue the certificates and securely store the user’s private key.

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 5 of 33

2.1 Go>Sign Client Apps
The Go>Sign Client Apps have been designed to enable busy, non-technical people to easily and
quickly sign documents and data using client held signing keys. It works with modern web browsers
to allow citizens and businesses to go green by eliminating paper-based approvals, and thereby
avoiding postage/courier, handling, storage and shredding costs.

The Go>Sign Client Apps are capable of creating signatures using locally-held signing keys (e.g. on
a smartcard / secure USB token via PKCS#11 or software managed keys accessed through
Windows CAPI or Mac Keychain keystore). As an advanced option Go>Sign Client Apps can
generate keys pairs and certificate signing requests (PKCS#10), which can be certified by ADSS
Server.

The Go>Sign Client Apps can sign documents using keys and certificates created on and stored by
ADSS Server in PFX (PKCS#12) format. The user needs to provide the correct PFX password to
sign a document or data object. Business applications can locally authenticate users e.g. using
multi-factor authentication, before requesting ADSS Server to return their respective roaming
credentials. One of the Go>Sign Client App available is Go>Sign Desktop.

2.1.1 Go>Sign Desktop

Go>Sign Desktop is a middleware application that allows users to sign the documents using locally
held signing keys without using signed Java Applets. Browser vendors are discontinuing support for
Java Applets, as Google Chrome has done already and thus Go>Sign Desktop provides a good
alternative solution. Go>Sign Desktop is a small utility application that runs on the user’s desktop
and all communication is via JavaScript within the web browser session.

2.1.2 Go>Sign Client Apps Benefits

The main benefits of Go>Sign Client Apps are:

 They work as part of a web-browser environment and the associated web pages can be
easily updated and functionality immediately rolled-out.

 They tightly control user interactions with the document through simple user interface with
all elements being controlled so the user can only perform the actions which are wanted.

 They enable digital certificate filtering to allow the business to control which certificates the
user can choose to sign with.

 Support for central / remote signing to be used as an alternative to using local keys and
certificates

 ADSS Server hashes the data and just the hash (typically SHA-256) is passed to the
Go>Sign Client Apps. The Go>Sign Service manages signature formatting, calling an
appropriate verification profile to check the signature and certificate status and creating the
correct format of signature. Formats supported including PDF, MS Word, XML and PKCS#7
/ CMS.

 Time-stamped, long-term enabled digital signatures including ETSI PAdES, XAdES, and
CAdES profiles.

 For PDFs full support is provided for PDF CDS and AATL signatures. Furthermore, visible
and invisible signatures are supported, new and existing signature fields can be signed and
certify signing and permissions are all available as options.

 Support for roaming credentials, whereby signing keys are held in a secure container on
ADSS Server and provided to the Go>Sign Client Apps at the time of signing.

 Support for hardware signature tablet devices for drawing hand signatures e.g. Wacom,
Signotec etc.

 Supports a wide variety of HTML5 browsers and platforms. For more information, see the

System Requirements section.

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 6 of 33

2.1.3 System Requirements

Go>Sign Desktop is supported on the following operating systems and web browsers:

 Windows 10, Windows 8 and 8.1, Windows 7, Mac OS X 10.4 Tiger and above

 Internet Explorer 9.0+, Google Chrome 26.0+, Firefox 20.0+, Safari 5.0+, Microsoft Edge
20.0 on Windows

2.1.4 Supported Key Stores

These cryptographic key stores, used to access the signing keys, are supported:

 MS CAPI/CNG (Windows)

 Mac Keychain keystore on Mac OS X and above

 PKCS#11 for hardware-based tokens

 Specific eID card implementations (these are separately licensed client specific keystore
implementations e.g. the Emirates eID card, Belgian eID card via IntoIT middleware)

 Ascertia Roaming Keys

2.2 Go>Sign Viewer
The Go>Sign Viewer supports PDF and Word format documents and provides a number of features
to aid the user experience such as page navigation, placing blank signature fields, signing
operations, and document access right enforcement.

Go>Sign Viewer has an advanced viewer which images the document in stages a few pages at a
time as needed. This allows large documents to be quickly opened and viewing started rather than
waiting for the whole document to be imaged.

Figure 2 - Go>Sign Viewer Example

2.2.1 Go>Sign Viewer Benefits

The key features of Go>Sign Viewer are:

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 7 of 33

 Users can view and navigate both PDF and MS Word documents that are provided from the
server or the user’s local desktop, the document images are shown within the user’s
browser.

 Data leakage protection is provided with policy controlled download and print options as
defined within the Go>Sign Service profile.

 The user can be allowed to create one or more blank signature fields in a PDF document.

 Existing blank signature fields and signature lines in PDF and MS Office Word documents
can be signed.

 The business application can associate a signature field for a user to sign, and thus can
control how and where the user signs the document.

 Existing signatures can be verified by clicking the target signature field (the verification is
performed by the ADSS Server Verification Service making Trusted CA management simple
and transparent to the user).

 PDF form filling is supported.

 The GUI and user visible messages support localization.

 The business application can control which buttons are visible on the Go>Sign Viewer
toolbar.

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 8 of 33

3 ADSS Go>Sign Service Integration
Business applications can integrate with ADSS Go>Sign Service using standard HTTP messages.

The business application sends an HTTP POST request to the Go>Sign Service, which contains
specific request headers and optionally the document to be signed. If required, the document to be
signed is placed in the HTTP POST request body. ADSS Go>Sign Service responds with standard
HTML and JavaScript code. The business application now embeds this in its own web page where
the user will be asked to sign.

This table shows the request headers that can be used in the HTTP POST request:

Header Name Mandatory Description

ORIGINATOR_ID YES The client ID, which must be registered in ADSS
Server Client Manager, and authorised to use
ADSS Go>Sign Service.

USER_ID NO ADSS Go>Sign Service uses this parameter as a
key alias if using server-side keys managed by
ADSS Server (i.e. for server-side signing). Keys
generated through Key Manager can be used for
server-side signing.

When a roaming key is used for client-side signing
ADSS Go>Sign Service uses this parameter to
locate the roaming key container from ADSS
Certification Service.

In the case of client side signing (when OS native
API or PKCS#11 devices are used) this parameter
is optional.

This parameter is also used to set the user ID for
authorise remote signing at ADSS RAS Service.

KEY_PASSWORD NO ADSS Go>Sign Service uses this parameter as a
key password for the server-side keys held by
ADSS Server (in PKCS#12/PFX format).

This parameter is mandatory when a roaming key
is generated.

Note for Key Manager generated keys the value of
this parameter is “NO_PASSWORD” and is a
mandatory parameter.

USER_NAME NO Used for “%Signed_By%” field in server-side and
mobile signing (used in PDF signature
appearance). For multilingual characters, data
should be sent in base64 format.

DATA_TO_BE_DISPLAYED NO Display message that will be shown to the user on
mobile device when remote authorisation is
enabled in Go>Sign Service. For multilingual
characters, data should be sent in base64 format.

PROFILE_ID NO Defines Go>Sign profile identifier to be used by
the web application.

TRANSACTION_ID NO Defines the transaction identifier. This parameter
is used in conjunction with parameter
“REUSE_GOSIGN_SESSION” to save and recall
the state of the document at Go>Sign Service.

If the business application needs to perform

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 9 of 33

Header Name Mandatory Description

multiple signing operations without uploading the
document multiple times, it is a mandatory
parameter.

REUSE_GOSIGN_SESSION NO Indicates that the document state at Go>Sign
Service must be maintained if multiple Go>Sign
profiles are utilized. Possible values of this
parameter are ‘true’ and ‘false’. If ‘true’, then
document state is preserved and otherwise not.

If the business application needs to perform
multiple signing operations without uploading the
document multiple times, it is a mandatory
parameter.

FIELD_COORDS NO Used to create empty signature field(s) in the PDF
document and signature appearance used at
signing time.

The value of this parameter is a comma-separated
sequence representing X1, Y1, X2, Y2, page#,
empty signature field name and signature
appearance ID, e.g.
10,10,100,200,1,Signature1,appearance_id

Multiple values are separated by “&” characters,
e.g.
10,10,100,200,1,Signature1,appearance_id1&100,
300,600,700,1,Signature2,appearance_id2

Note the provided signature appearance IDs must
exist in the ADSS PDF Signature Appearances.

FIELD_NAME NO Represent an empty signature field
name/signature line, and its value overrides the
equivalent field name/signature line, as configured
in Go>Sign profile. If set this will prevent the user
from signing in any other field.

If the business application wants the user to only
sign the specific field, then this parameter is
mandatory.

Should the business application want the user to
sign multiple fields then comma-separated field
names are set in this parameter, e.g. Signature1,
Signature2, Signature3. Multiple field signing is
only supported for PDF documents using Go>Sign
Viewer. For MS Office Signing both the
suggested signer email address and setup ID for
the signature line are supported.

SIGNATURE_APPEARANC
E

NO Signature appearance ID for PDF document
signing. e.g. appearance_id.

Note the provided signature appearance ID must
exist in the ADSS PDF Signature Appearances.

DOCUMENT_ID NO Defines the document identifier provided by the
business application. This is shown to the user in
Go>Sign Viewer.

Created and used by the business application for

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 10 of 33

Header Name Mandatory Description

document management purposes.

DOCUMENT_NAME NO Name of the document that is displayed to the
user in Go>Sign Viewer.

This parameter is mandatory for MS Office
signing.

If Document Conversion feature is enabled in
Go>Sign profile, then this parameter is mandatory.
The value of this parameter must be the name of
the document including its extension, e.g.
contract.docx. The following file formats can be
converted by Go>Sign Service: .doc, .docx, .xls,
.xlsx, .ppt, .pptx, odt, sxw, .rtf, .txt, .ods, .csv, tsv
and .tif.

Created and used by the business application for
document management purposes.

FILTER_SUBJECT_DN_
CONTAINS

NO String value upon which available certificates will
be filtered on when the local key store is used for
client side signing. Only those certificates whose
subject DN value matches the provided string
value will be listed. Possible values are:

CN, OU, O, C

e.g. CN=Test Certificate, O=Ascertia

This will list all the certificates from the local key
store that have a common name “Test Certificate”
and organization “Ascertia” in the certificate’s
Subject DN.

FILTER_ISSUER_DN_CON
TAINS

NO String value upon which available certificates will
be filtered on when the local key store is used for
client side signing. Only those certificates whose
issuer DN value matches the provided string value
will be listed. Multiple issuer DN values can be
specified using a “~” separated list. Possible
values are:

CN, OU, O, C

e.g. CN=Test Issuer, O=Ascertia, CN= Test
Issuer2, O=Ascertia

This will list all the certificates from the local key
store that have a common name “Test Issuer” and
organization “Ascertia”, or, that have a common
name “Test Issuer2” and organization “Ascertia” in
the certificate’s issuer DN.

FILTER_SIGNATURE_ALG
O_CONTAINS

NO String value upon which available certificates will
be filtered on when the local key store is used for
client side signing. Only those certificates whose
signature algorithm(s) value matches the provided
string value will be listed. Multiple signature
algorithms can be specified using a comma-
separated list, e.g.
SHA1WithRSA,SHA256WithRSA,SHA384WithRS
A,SHA512WithRSA

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 11 of 33

Header Name Mandatory Description

This will list all the certificates from the local key
store whose certificate signature algorithm
matches one of the stated values.

FILTER_POLICY_OID_CON
TAINS

NO String value upon which available certificates will
be filtered on when local key store is sued for
client side signing. Only those certificates whose
certificate policy OID value matches the provided
string value will be listed. Multiple certificate policy
OIDs can be specified using a comma-separated
list, e.g. 5.7.9.101.67.98.1.3

This will list all the certificates from the local key
store whose certificate policy extension contains
the stated policy OID(s).

FILTER_KU_CONTAINS NO String value upon which available certificates will
be filtered on when local key store is sued for
client side signing. Only those certificates whose
certificate Key Usage value matches the provided
string value will be listed. Multiple Key Usage
definitions can be specified using a comma-
separated list. Possible values are:

digitalSignature, nonRepudiation,
keyEncipherment, dataEncipherment,
keyAgreement, keyCertSign, cRLSign,
encipherOnly, decipherOnly

This will list all the certificates from the local key
store whose certificate Key Usage extension
contains one or more of those stated.

FILTER_EKU_CONTAINS NO String value upon which available certificates will
be filtered on when local key store is sued for
client side signing. Only those certificates whose
certificate Extended Key Usage value matches the
provided string value will be listed. Multiple
Extended Key Usages definitions can be specified
using a comma-separated list. The possible
values are:

clientAuth,emailProtection,smartCardLogon

This will list all the certificates from the local key
store whose certificate Extended Key Usage
extension contains one or more of those stated.

FILTER_SHOW_EXPIRED_
CERTIFICATES

NO Boolean value to indicate if a filtered list of
certificates should include expired certificates or
not.

Possible values are ‘true’ or ‘false’.

FILTER_SHOW_QUALIFIED
_CERTIFICATES

NO Boolean value to indicate if a filtered list of
certificates should include qualified certificates or
not. Possible values are ‘true’ or ‘false’.

FILTER_SAN_OTHER_NAM
E_CONTAINS

NO String value upon which available certificates will
be filtered on when local key store is used for
client side signing. Only those certificates whose
certificate otherName OID value matches the

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 12 of 33

Header Name Mandatory Description

provided string value will be listed. Multiple
certificate otherName OIDs can be specified using
a comma-separated list, e.g. 5.7.9.101.67.98.1.3.
This will list all the certificates from the local key
store whose certificate Subject Alternative Name
(SAN) extension contains the stated otherName
OID(s).

FILTER_SAN_OTHER_NAM
E_VALUE_CONTAINS

NO String value upon which available certificates will
be filtered on when local key store is used for
client side signing. Only those certificates whose
certificate otherName value matches the provided
string value will be listed. Multiple certificate
otherName values can be specified using a '~&~'
separated list, e.g. value1~&~value2.
This will list all the certificates from the local key
store whose certificate Subject Alternative Name
(SAN) extension contains the stated otherName
values.

FILTER_SAN_RFC822_NA
ME_CONTAINS

NO Boolean value to indicate if a filtered list of
certificates should include Subject Alternative
Name (SAN) rfc822Name extension or not.
Possible values are ‘true’ or ‘false’.

FILTER_SAN_RFC822_NA
ME_VALUE_CONTAINS

NO String value upon which available certificates will
be filtered on when local key store is used for
client side signing. Only those certificates whose
certificate rfc822Name value matches the
provided string value will be listed. Multiple
certificate rfc822Name values can be specified
using a '~&~' separated list, e.g.
value1~&~value2.
This will list all the certificates from the local key
store whose certificate Subject Alternative Name
(SAN) extension contains the stated rfc822Name
values.

USER_LANGUAGE NO Defines the preferred language for Go>Sign
Desktop and Go>Sign Viewer GUI and messages.
Possible values are en, fr, de, etc. If this
parameter is not specified, then default English
language is used.

If the business application wishes to display the
messages in different languages based on user
preferences, then this parameter is mandatory.

To change the language preference, see Section
3.4.

REQUEST_TYPE NO Define the type of the request that is sent to
Go>Sign Service. This parameter is used in
conjunction with “TRANSACTION_ID” request
parameter.

When the business application wishes to send the
hash of the document to Go>Sign Service instead
of the whole document then this parameter is

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 13 of 33

Header Name Mandatory Description

mandatory. Currently, the only accepted value for
this parameter is “SET_HASH”.

When this parameter is used the business
application must hash the document and send the
resulting value in the body of the HTTP request
instead of the actual document.
Currently this feature is only supported for PDF
documents

FINISH_URL NO Defines the URL hosted by the business
application to which Go>Sign Viewer redirects the
user to when they press the toolbar “Finish”
button.

SIGNING_REASON NO Signing reason included in a signature.

SIGNING_LOCATION NO Signing location included in a signature.

SIGNER_CONTACT_INFOR
MATION

NO Signer contact information included in a signature.

COMPANY_LOGO NO Defines whether or not to include the associated
company logo in a visible PDF signature.

HAND_SIGNATURE_IMAGE NO Defines whether or not to include the hand
signature image in a visible PDF signature.

CITY NO Defines the city signed attribute in XAdES
signatures.

POSTAL_CODE NO Defines the postal code signed attribute in CAdES
and XAdES signatures.

COUNTRY NO Defines the country signed attribute in CAdES and
XAdES signatures.

STATE_OR_PROVINCE NO Defines the state or province signed attribute in
CAdES and XAdES signatures.

COMMITMENT_TYPE_INDI
CATION

NO Defines the commitment made by the signer. It is
used as signed attribute in CAdES and XAdES
signatures. It is used in PAdES signatures when
explicit signature policy is set to ON in the signing
profile.

SIGNER_ROLE NO Defines the signer role who generated the
signature. It’s used as a signed attribute in
PAdES, CAdES and XAdES signatures.

DATA_OBJECT_FORMAT NO Defines the document format. It’s used as a
signed attribute in PAdES, CAdES and XAdES
signatures.

SIGNING_ELEMENT_NAME NO This parameter defines the XML elements to be
signed, these can a list of tag or element names or
an XPath expressions, e.g.
‘ContractName,ContractDate’ or
‘//ContractName,//ContractDate’

USER_KEY NO This parameter uses to set the user signing key

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 14 of 33

Header Name Mandatory Description

alias for remote authorise signing held at server
(Software/HSM/Azure KeyVault etc.).

AUTH_TYPE NO This parameter defines the authentication type of
registered user which is perform by ADSS RAS
Service, e.g. BASIC_AUTH, NO_AUTH, SAML

AUTH_VALUE NO This parameter contains the base64 value of
SAML assertion when AUTH_TYPE parameter is
set to SAML.

SAN_EXTENSION NO String value to add Subject Alternative Name
(SAN) extension during key/cert generation.
Multiple SAN extensions can be specified using a
‘&’ separated list. Possible values are:

rfc822Name, otherName, iPAddress,dNSName

e.g
rfc822Name==value&dNSName==value&iPAddre
ss==value&otherName==OID=value,encoding=UT
F8String

for multiple values use ‘~’ seprator

rfc822Name==value1~value2&dNSName==value
1~value2&iPAddress==value1~value2&otherNam
e==OID=value,encoding=UTF8String~OID=value,
encoding=OctetString~OID=value,encoding=Print
ableString.

Table 1 - ADSS Go>Sign Service HTTP Request Headers

When Go>Sign Viewer is used the business application does not need to use the
Go>Sign Client Apps JavaScript methods and hence the integration is a simple process.
However, if the business application does not use the Go>Sign Viewer it must utilise the
JavaScript methods described in Section 4 to interact with the Go>Sign Client Apps.

3.1 Go>Sign Service Request (JSP Example)
Below is an example JSP web page code that details how the business application sends a request
to ADSS Go>Sign Service. ADSS Go>Sign Service returns the HTML and JavaScript code snippet
that is embedded within the web page and subsequently rendered by the web browser that allows
the interaction with Go>Sign Client Apps.

<html>

<head>

<!-- Replace the localhost with the hostname/IP address where the ADSS Go>Sign Service is running -

->

 <script language="JavaScript" src="http://localhost:8777/adss/gosign/applet/lib/adss_gosign.js"

type="text/javascript"></script>

 <script language="JavaScript" src="http://localhost:8777/adss/gosign/script/jquery-

1.9.1.min.js" type="text/javascript"></script>

</head>

<body>

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 15 of 33

<%

 String str_docName = getServletContext().getRealPath("/") + "/data/test_input_unsigned.pdf";

 FileInputStream fis = new FileInputStream(str_docName);

 byte[] m_byteArrDocument = new byte[fis.available()];

 fis.read(m_byteArrDocument);

 fis.close();

 URL obj_url = new URL("http://localhost:8777/adss/gosign/service");

 HttpURLConnection obj_http = (HttpURLConnection) obj_url.openConnection();

 obj_http.setDoOutput(true);

 obj_http.setRequestMethod("POST");

 obj_http.setRequestProperty("Content-Length", m_byteArrDocument.length + "");

 obj_http.setRequestProperty("Content-Type", "application");

 obj_http.setRequestProperty("ORIGINATOR_ID", "samples_test_client");

 obj_http.setRequestProperty("PROFILE_ID", "adss:gosign:profile:001");

 OutputStream obj_out = obj_http.getOutputStream();

 obj_out.write(m_byteArrDocument);

 if (obj_http.getResponseCode() == 200) {

 BufferedReader obj_br = new BufferedReader(new

InputStreamReader(obj_http.getInputStream()));

 String str_line = "";

 while ((str_line = obj_br.readLine()) != null) {

 out.println(str_line);

 }

 obj_br.close();

 } else {

 out.println("HTTP Code : " + obj_http.getResponseCode());

 }

 obj_out.close();

%>

</body>

</html>

3.2 Go>Sign Service Request (ASP.NET / C# Example)
Below is an example ASP.NET (C#) code that details how the business application sends a request
to ADSS Go>Sign Service. ADSS Go>Sign Service returns the HTML and JavaScript code snippet
that is embedded within the web page and subsequently rendered by the web browser that allows
the interaction with Go>Sign Client Apps.

String str_filePath = Server.MapPath("~/data/test_input_unsigned.pdf");

 byte[] documentbytes = File.ReadAllBytes(str_filePath);

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 16 of 33

 HttpWebRequest request= (HttpWebRequest)

HttpWebRequest.Create("http://localhost:8777/adss/gosign/service");

 request.Method = "POST";

 request.Headers.Add("ORIGINATOR_ID", "samples_test_client");

 request.ContentLength = documentbytes.Length;

 request.ContentType = "application";

 request.Headers.Add("PROFILE_ID", "adss:gosign:profile:001");

 Stream stream = request.GetRequestStream();

 stream.Write(documentbytes, 0, documentbytes.Length);

 HttpWebResponse httpresponse = (HttpWebResponse)request.GetResponse();

 if (httpresponse != null)

 {

 StreamReader str = new StreamReader(httpresponse.GetResponseStream());

 string viewer = str.ReadToEnd();

 GoSignViewer.InnerHtml = viewer;

 }

The associated web page should contain the required JavaScript imports to allow the received
HTML and JavaScript code snippet to function correctly. For example:

<!-- Replace localhost with the hostname/IP address where the ADSS Go>Sign Service is running -->

 <script language="JavaScript" src="http://localhost:8777/adss/gosign/applet/lib/adss_gosign.js"

type="text/javascript"></script>

 <script language="JavaScript" src="http://localhost:8777/adss/gosign/script/jquery-

1.9.1.min.js" type="text/javascript"></script>

3.3 How Business Applications Receive Signed Documents
The business application requests that ADSS Go>Sign Service returns the signed document. It
sends an HTTP POST request with the necessary request headers. ADSS Go>Sign Service
processes the request and responds back to the business application with an HTTP response
containing the header information and the signed document. The signed document is placed in the
body section of the HTTP response.

The following header is sent in the HTTP Post request from the business application to initiate the
request:

Header Name Mandatory Description

TRANSACTION_ID YES Defines the transaction identifier for ADSS
Go>Sign Service to process.

Table 2 - HTTP Request Headers to Initiate the Go>Sign Request

The following headers are sent in the HTTP response from the ADSS Go>Sign Service:

Header Name Mandatory Description

TRANSACTION_ID YES Defines the transaction identifier for the
business application. Note this matches what

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 17 of 33

Header Name Mandatory Description

was sent in the request.

USER_ID NO Defines the user identifier if that was provided
by the business application in the initial ADSS
Go>Sign Service request.

DOCUMENT_ID NO Defines the document identifier that was
provided by the business application in the
initial ADSS Go>Sign Service request.

SESSION_ID NO Defines the user session identifier if it was
provided by the business application in the
initial ADSS Go>Sign Service request. Note it
may not have been sent in the initial request.

GOSIGN_RESPONSE_STATUS

 Generic status identifier for the transaction.
Possible values are: Success, Failure, Pending,
and Declined.

MESSAGE Message string as sent by the Go>Sign
Service. Generally, this is only used when there
is an error.

Table 3 - HTTP Response headers from Go>Sign Service

3.3.1 Signed Document Download Request (JSP Example)

Below is an example JSP web page code that details how the business application makes a request
ADSS Go>Sign Service to retrieve a signed document:

<%

 URL obj_url = new URL("http://localhost:8777/adss/gosign/service");

 HttpURLConnection obj_http = (HttpURLConnection) obj_url.openConnection();

 obj_http.setDoOutput(true);

 obj_http.setRequestMethod("POST");

 obj_http.setRequestProperty("Content-Type", "text/plain");

 // Gets the transaction identifier from the request parameter

 obj_http.setRequestProperty("TRANSACTION_ID",

request.getParameter("gosign_transaction_id"));

 byte[] m_byteArrDocument = null;

 if (obj_http.getResponseCode() == 200) {

 InputStream = obj_http.getInputStream();

 ByteArrayOutputStream buffer = new ByteArrayOutputStream();

 int nRead;

 byte[] data = new byte[1024];

 //reads the signed documents bytes from the HTTP response body.

 while ((nRead = inputStream.read(data, 0, data.length)) != -1) {

 buffer.write(data, 0, nRead);

 }

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 18 of 33

 buffer.flush();

 m_byteArrDocument = buffer.toByteArray();

 buffer.close();

 } else {

 out.println("HTTP Code : " + obj_http.getResponseCode());

 }

%>

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 19 of 33

3.3.2 Signed Document Download Request (ASP.NET / C# Example)

Similarly, below is an example ASP.NET (C#) web page code that details how a business
application makes a request to ADSS Go>Sign Service to retrieve the signed document:

 HttpWebRequest request =

(HttpWebRequest)HttpWebRequest.Create("http://localhost:8777/adss/gosign/service");

 request.Method = "POST";

 request.ContentType = "text/plain";

 request.Headers.Add("TRANSACTION_ID", str_id);

 HttpWebResponse httpresponse = (HttpWebResponse)request.GetResponse();

 byte[] byteArr_doc = null;

 if (httpresponse != null)

 {

 // reads the signed document bytes from the HTTP response body.

 byteArr_doc = ReadBytesFromStream(httpresponse.GetResponseStream());

 }

3.4 Language Preference Settings
Go>Sign Desktop and Go>Sign Viewer both support localisation. The labels and messages shown
by them can be displayed in different languages. To read more about how the business application
can instruct Go>Sign Service to use different language, and for a list of supported configuration
parameters, follow this link:

http://manuals.ascertia.com/ADSS-Admin-Guide/default.aspx?pageid=language_manager

http://manuals.ascertia.com/ADSS-Admin-Guide/default.aspx?pageid=language_manager

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 20 of 33

4 Go>Sign Client Apps JavaScript Library
If the business application is not using Go>Sign Viewer, then HTML and JavaScript code is required
to connect with Go>Sign Desktop.

ADSS Go>Sign Service provides a JavaScript library (adss_gosign.js) that contains a number of
JavaScript functions that are used to provide custom configurations for Go>Sign Client Apps, as well
as to perform different actions using Go>Sign Client Apps.

4.1 Pre-processing Functions
 GoSign_PostInit()

The business application must implement this JavaScript function in the same web page
where the HTML and JavaScript code snippet received from Go>Sign Service is embedded.

This method is automatically called implicitly once the Go>Sign Client Apps are initialized. In
this method business applications can set additional configurations for Go>Sign Client Apps,
e.g. set the HTML form name and HTML Select control name, i.e. to show a dropdown list
by calling the GoSign_SetFormName() and GoSign_SetCertificateListName()
respectively.

This method can also be used by the business application to perform any custom
functionality before the user signs a document, e.g. displaying instructions or a guidance
message.

The following functions must be called in the body of the GoSign_PostInit() function.

 GoSign_SetFormName(formName)
Set the name of the HTML form which contains the controls accessed by Go>Sign Client
Apps.

 GoSign_SetFileChooserName(fileChooserName)
Set the form field name for the HTML File control to read the file from the user machine.

 GoSign_SetCertificateListName(GoSignCertificateList)
Set the form field name for the HTML List control which would be populated by Go>Sign
Apps with the aliases of the certificates loaded from configured keystore.

 GoSign_SetSigningReason(signingReason)
Set the signing reason attribute for a PDF signature.

 GoSign_SetSigningLocation(signingLocation)
Set the signing location attribute for a PDF signature.

 GoSign_SetContactInfo(contactInfo)
Sets the contact info attribute for a PDF signature.

 GoSign_SetCertificateAlias(certAlias)
Set the alias of the certificate during roaming key registration. Alternatively, this value could
be sent by Go>Sign Desktop to the Go>Sign processor for server side document signing.

 GoSign_SetSubjectDN(subjectDN)
Set Subject DN for the certificate that will be generated during roaming key registration.

 GoSign_SetAppletDialogColors(titleColor,titleTextColor,backgroundColor,textColor,button
sTextColor)
Instruct Go>Sign Client Apps to use the provided colours in the password/PIN dialogs
(PKCS#11, Roaming key, eID card etc.). The value of each colour must be in RGB format,
e.g. title colour value should be specified as 200:200:200.

 GoSign_SetAppletDialogTextFont(fontName)
Instruct Go>Sign Client Apps to display the text in the provided font in password/PIN dialogs

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 21 of 33

(PKCS#11, Roaming key, eID card etc.), e.g. Tahoma. For more information about the
supported font names in Java, see the link below:

http://sanjaal.com/java/167/java-graphics/displaying-a-list-of-all-available-fonts-using-java/

 GoSign_SetInputDocument(inputDocToBeSigned)
Used to directly pass the base64 encoded contents of the document to be signed to
Go>Sign Client Apps.

 GoSign_SetInputDocumentFieldName(formFieldForInputDoc)
Set the HTML form field name containing the base64 encoded contents of the input
document to be signed by Go>Sign Client Apps.

 GoSign_SetResultFilePostfix(postfix)
Set the result file postfix if the output document is to be stored locally on the user machine.

 GoSign_SetOutputDocumentName(outputDocumentName)
Set the file name if the output document is to be stored locally on the user machine.

 GoSign_SetOutputDocumentFieldName(formFieldForSignedDoc)
Set the HTML form field name where the base64 encoded contents of the signed document
can be set by Go>Sign Client Apps.

 GoSign_Base64Encode(contentToBeEncoded)
Utility function to base64 encode the textual or XML formatted contents.

 GoSign_Base64Decode(contentToBeDecoded)
Utility function to decode the base64 encoded textual or XML formatted contents.

 GoSign_ShowCertificates()
This function populates a drop down control with certificates fetched from a configured
keystore based on specified filter criteria. The web application’s drop down control should
use an HTML Select control and the name of the field should be provided using the function
GoSign_SetCertificateListName.

NOTE: When using Go>Sign Desktop, a ‘callback’ function name must be passed as an
argument to this function. The code snippet for the callback function should look like this:

GoSign_ShowCertificates(function(error){

 if(error != null){

 alert(error.errorCode +''+ error.message);

 }

 });

 GoSign_LoadCertificates()
This function loads the certificates in the background from the configured keystore. This is
used when it is not required to show the certificates in a drop down list. If only one certificate
is loaded, then it would automatically be used during the signing operation but if there are
multiple certificates loaded then the first certificate from the list would be used.

NOTE: When using Go>Sign Desktop, a ‘callback’ function name must be passed as an
argument to this function. The code snippet for the callback function should look like this:

GoSign_LoadCertificates(function(error){

 if(error != null){

 alert(error.errorCode +''+ error.message);

 }

http://sanjaal.com/java/167/java-graphics/displaying-a-list-of-all-available-fonts-using-java/

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 22 of 33

 });

 GoSign_SetCallbackFunction(callbackFunction)
This method instructs Go>Sign Client Apps to invoke the business application call-back
function once the signing operation is done. The call-back function will set an error object if
an error occurred during the signing process. Error object contains an error code and
message. If there is no error, then error object will be null.

This method must be called before the GoSign_Process() function. The code snippet for
the callback function looks like this:

function callbackFunction(error){

 if(error != null){

 alert(error.errorCode +''+ error.message);

 }

 }

 GoSign_GetVersion()
This method is used to get Go>Sign Desktop version. If client is using old version then this
method will return ‘NULL’ otherwise it will return proper build number of Go>Sign Desktop.

4.2 Processing Functions
 GoSign_Process()

Starts the document signing process during which the user may be asked to provide a PIN
or password to access the locally held signing key.

Once signature processing is completed the configured callback function is automatically
invoked. The callback function that is invoked should have been configured using the
function GoSign_SetCallbackFunction.

4.3 Post Processing Functions
 GoSign_GetTransactionId()

This method is only applicable when Go>Sign Client Apps are embedded in the web page. It
returns the transaction identifier that will be used by the business application to retrieve the
signed document from ADSS Go>Sign Service.

 GoSign_GetErrorCode()
If the requested operation fails, then this method can be called to retrieve the error code.
Each error code is mapped to a readable error message string from the appropriate
messages language file.

 GoSign_GetErrorReason()
If the requested operation fails, then this method can be called to retrieve the readable error
message string from appropriate messages language file.

 GoSign_GetRaTransactionId()
Return Transaction ID generated by a Registration Authority(RA) when Go>Sign Service
sends a certificate signing request to RA. It is a mandatory request parameter in Go>Sign
Service in order to retrieve the generated certificate.

 GoSign_GetOutputDocument()
Return the base64 encoded contents of the signed documents.

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 23 of 33

5 Go>Sign Viewer JavaScript Functions
Go>Sign Viewer provides several JavaScript functions that facilitate the business application to
retrieve information from the Go>Sign Viewer.

 window.pdfviewer.getTransactionId()
Return the transaction identifier that will be used by the business application to get the
signed document from ADSS Go>Sign Service, or used in communication with ADSS
Go>Sign Service for other functionality.

 GoSign_NotifyStateChange(status_code)
Sometimes business applications wish to perform some custom functionality as soon as an
operation is performed by a user within Go>Sign Viewer. For example, Go>Sign Viewer
notifies the host web page of the business application that a signature field has been
created, signed or a form field has been saved. In such scenarios the business application
can implement this function in the host webpage in order to get a notification update on the
document state change. The possible values for a status_code argument passed by
Go>Sign Viewer are:

o changed_incomplete
User didn’t fill all the mandatory fields in the document)

o changed
The user created signature field(s) or filled the form field(s)

o signed
A signature field is signed by the user

o declined
User pressed the Decline button

o error
Some error occurred

The code snippet for this function should look like this:

function GoSign_NotifyStateChange(status_code){

 if(status_code == ”changed_incomplete”){

 alert(“All mandatory fields in the PDF form are not filled”);

 }else if(status_code == ”changed”){

 alert(“Signature field(s) created or/and form field(s) saved”);

 }else if(status_code == “signed”){

 alert(“A signature field is signed by user”);

 } else if(status_code == “error”){

 alert(“Some error occurred”);

 }

 }

Clicking the Finish button in Go>Sign Viewer toolbar redirects the browser to the business
application webpage address configured in Go>Sign Service profile or passed as FINISH_URL
parameter to Go>Sign Service. The business application webpage receives the following query
parameters from Go>Sign Viewer, which it can use to continue further processing at business
application end:

 gosign_transaction_id
The value of this parameter is a unique transaction Id generated by Go>Sign Service for this
transaction which can be used to download the updated or signed document from Go>Sign
Service.

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 24 of 33

 gosign_status
The value of this parameter provides the status of the last operation performed by user in
Go>Sign Viewer. The possible values of this parameter are:

o unchanged
The user made no changes or actions document.

o changed_incomplete
The user didn’t fill all the mandatory fields in the document.

o changed
The user created signature field(s) or filled the form field(s).

o signed
A signature field is signed by the user.

o declined
User pressed the Decline button.

o gosign_message
If user declined the transaction and provided a declining reason then this parameter
provides the declining reason to the business application.

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 25 of 33

6 Example Scenarios & Demos for Go>Sign Service
ADSS Client SDK (Java and .NET) ships with a number of web based Go>Sign Service demos,
which highlight how ADSS Go>Sign Service can be used in different business scenarios. These
demos show how ADSS Go>Sign Service profiles provide a powerful platform for business
applications to easily implement complex signing processes.

For information on how to configure the different ADSS Go>Sign Service Profiles, see the ADSS
Server Admin Manual:

http://manuals.ascertia.com/ADSS-Admin-Guide/default.aspx?pageid=adss_go-sign_service

 To run Go>Sign demo application without any changes, ADSS Server, Go>Sign Desktop
and ADSS Client SDK (Java/.NET) must be installed on the same machine. In addition, the
web browser should be accessed from the same machine where both ADSS Server and
ADSS Client SDK (Java/.NET) are installed. To install Go>Sign Desktop see the ADSS-Go-
Sign-Desktop-Installation-Guide.pdf at location

<ADSS Client SDK Directory>/GoSign/Desktop/docs.

 If ADSS Server and ADSS Client SDK (Java/.NET) are installed on different machines, then

o Go>Sign demo pages must be modified to specify the address of the ADSS Server
machine

o Go>Sign Service Address configuration must be updated using ADSS Server Console
to reflect the IP address or host name. Either at Service Manager screen or inside the
required Go>Sign Profile under advanced settings tab.

Once Go>Sign demo web application has been deployed successfully, the user can access each
demo by launching the available_demos.html file available at location:

<ADSS Client SDK>/GoSign/Demo

All the Go>Sign demos can be tested with desktop client by setting the appropriate
configuration item in the respective Go>Sign profile in the ADSS Server Console as
shown in the figure.

http://manuals.ascertia.com/ADSS-Admin-Guide/default.aspx?pageid=adss_go-sign_service
http://manuals.ascertia.com/ADSS-Admin-Guide/default.aspx#pageid=go-sign_service_manager_settings1
http://manuals.ascertia.com/ADSS-Admin-Guide/default.aspx#pageid=advanced_settings2

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 26 of 33

Figure 3 - Go>Sign Demo Parking Page

The sections below explain each demo individually in detail and provide information about how the
demo works, which configurations are applied in Go>Sign profile, and where the source files of a
particular demo are available.

6.1 Document Signing Demos

6.1.1 Go>Sign Viewer – PAdES Part 2, Long-term Signature with Server-side
Keys

This is another common usage mode, which uses Go>Sign Viewer to view the document. The
signing of the document is performed by ADSS Server. Go>Sign Viewer is only used to display the
PDF document, create blank signature fields and sign aforementioned fields using server side keys
held by ADSS Server.

This demo uses the sample Go>Sign profile (adss:gosign:profile:004) configured in the ADSS
Go>Sign Service.

The user can access this demo using the following URL(s):

 http://localhost:8766/pdf-sig-viewer-remote (Java)

 http://localhost/pdf-sig-viewer-remote (.Net)

The source code for web pages used in this demo can be found in the ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/tomcat/webapps/PDF-Sig-Viewer-Remote

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 27 of 33

6.1.2 Go>Sign Viewer – PAdES-LTV Part 4, Long-term Signature with

PKCS#11

Another common usage mode, which uses Go>Sign Viewer to display PDF documents, create blank
signature fields and sign the document. ADSS Go>Sign Service computes the hash of the
document, Go>Sign Desktop performs hash signing and ADSS Go>Sign Service verifies and
enhances the PAdES signature into a Long-Term Verification format and assembles the final PDF.

This demo uses the PKCS# 11 keystore, and the sample Go>Sign profile (adss:gosign:profile:005)
configured in the ADSS Go>Sign Service. By default, the PKCS#11 device (Aladdin) is configured in
the Go>Sign profile.

Pre-requisites:

In order to run this demo, make sure that your desired PKCS#11 device is configured in Go>Sign
profile. Ensure that you restart the Go>Sign Service after any updates.

The user can access this demo using the following URL(s):

 http://localhost:8766/pades-sig-viewer-local (Java)

 http://localhost/pades-sig-viewer-local (.Net)

The source code for web pages used in this demo can be found in ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/GoSignDemos/Pades-Sig-Viewer-Local

6.1.3 Go>Sign Viewer – PAdES Part 2, Long-term Signature with Roaming Key

This is another fairly common usage mode using the power of Go>Sign Desktop with its Go>Sign
Viewer to control the display of a PDF. The Go>Sign Viewer is used to display a PDF document,
creating blank signatory fields and subsequent signing. ADSS Go>Sign Service handles the
document hash computation, Go>Sign Desktop performs hash signing, ADSS Go>Sign Service
uses ADSS Server to verify and enhance the signature into an advanced format, and finally, the
enhanced signature is assembled into the PDF document by the ADSS Go>Sign Service.

This demo uses a roaming keystore, and the sample Go>Sign profile (adss:gosign:profile:003)
configured in the ADSS Go>Sign Service. A roaming key is used for local signing (of course it can
easily be configured to use locally held CAP/PKCS#11 based key or server-side key).

Pre-requisites:

In order to run this demo, first run the demo defined in Section 6.2.1 with key alias value
“ROAMING_KEY_ALIAS”.

The user can access this demo using the following URL(s):

 http://localhost:8766/pdf-sig-viewer (Java)

 http://localhost/pdf-sig-viewer (.Net)

The source code for web pages used in this demo can be found in the ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/GoSignDemos/PDF-Sig-Viewer

6.1.4 Native Viewer – PAdES Part 2, Basic Signature with Native API

This is a common usage scenario of Go>Sign Desktop without Go>Sign Viewer. ADSS Go>Sign
Service is responsible for producing the document hash. Go>Sign Desktop signs the hash and
finally, ADSS Go>Sign Service assembles the signature into the original document. If the business
application displays the PDF to the user, then Adobe Reader (or any installed PDF Reader) is used
and this can validate the signature locally using whatever local trust anchors exist on the user’s
system.

http://localhost:8766/pdf-sig-viewer
http://localhost/pdf-sig-viewer

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 28 of 33

This demo uses the OS native API (MSCAPI & Mac Keychain). It uses the sample Go>Sign profile
(adss:gosign:profile:001) configured in ADSS Go>Sign Service.

The user can access this demo using the following URL(s):

 http://localhost:8766/pdf-sig (Java)

 http://localhost/pdf-sig (.Net)

The source code for web pages used in this demo can be found in the ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/GoSignDemos/PDF-Sig

6.1.5 Native Viewer – PAdES Part 2, Long-term Signature with PKCS#11

This is a common usage scenario of Go>Sign Desktop when it is used with a native document
viewer, e.g. Adobe Reader. Go>Sign Service handles the document hash computation, Go>Sign
Desktop signs the computed hash, and the Go>Sign Service assembles and enhances the signature
to Long Term Verification format with the help of ADSS Server.

This demo uses PKSC#11 keystore, and the sample Go>Sign profile (adss:gosign:profile:002)
configured in the ADSS Go>Sign Service. By default, the PKCS#11 device (Aladdin) is configured in
the Go>Sign profile.

Pre-requisites:

In order to run this demo, make sure that your desired PKCS#11 device is configured in Go>Sign
profile. Ensure that you restart the Go>Sign Service after any updates.

The user can access this demo using the following URL(s):

 http://localhost:8766/pdf-sig-local (Java)

 http://localhost/pdf-sig-local (.Net)

The source code for web pages used in this demo can be found in the ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/GoSignDemos/PDF-Sig-Local

6.1.6 CAdES-X-L-Enveloping, Long-term Signature with Native API

This demo shows how CAdES-BES & CAdES-XL signatures can be computed over any type of
document using Go>Sign Desktop.

This demo uses the OS native API (MSCAPI & Mac Keychain), and the sample Go>Sign profile
(adss:gosign:profile:008) configured in the ADSS Go>Sign Service.

The user can access this demo using the following URL(s):

 http://localhost:8766/file-sig (Java)

 http://localhost/file-sig (.Net)

The source code for web pages used in this demo can be found in the ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/tomcat/webapps/File-Sig

6.1.7 XAdES-BES-Enveloped, Long-term Signature with Native API

This is a common usage scenario of Go>Sign Desktop for XML signatures.

This demo uses the OS native API (MSCAPI & Mac Keychain), and the sample Go>Sign profile
(adss:gosign:profile:006) configured in the ADSS Go>Sign Service.

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 29 of 33

The user can access this demo using the following URL(s):

 http://localhost:8766/xml-sig (Java)

 http://localhost/xml-sig (.Net)

The source code for web pages used in this demo can be found in ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/tomcat/webapps/XML-Sig

6.1.8 e-Tendering (XAdES-BES-Enveloped, Long-term Signature with Native
API)

This demo is not available by default in ADSS Client SDK. If you want to see how e-Tendering
works, then you should request the special ADSS Server license and a demo package by sending
an email to support@ascertia.com.

This is a special usage scenario in which Go>Sign Desktop is used to create an XML signature.

Description:

1. A tender is created on the server by demo web application.

2. Web application creates a certificate for tender using Certification Service.

3. User selects an already created tender for which he wants to submit a response.

4. User is presented with a web form where he can browse a document from his local
machine. The form contains a drop down list which is populated with a number of certificates
loaded from the configured keystore.

5. User browses and selects a document from his local machine.

6. User selects a certificate from the drop down list.

7. User clicks Secure Upload button to proceed with signing and encryption of the document.

8. XML document is signed by Go>Sign Desktop and then encrypted by Go>Sign Service
using the tender certificate and the final document is retrieved by the web application and a
response entry is shown in the web application against the tender.

9. User clicks to view the available tender responses and then he is presented with a list of
such responses.

10. User clicks Decrypt to decrypt the tender response, and the tender is decrypted using
Decryption Service and three possible options are displayed to user: verify the response
signature (using Verification Service), download the PayLoad (original user document) or
download the signed tender response XML.

11. User can choose either of the provided option to see the results.

This demo uses the OS native API (MSCAPI & Mac Keychain), and the sample Go>Sign profile
(adss:gosign:profile:006) configured in the ADSS Go>Sign Service.

Pre-requisites:

In order to run this demo, please ensure the following:

 ENCRYPTION must be enabled for Go>Sign Service in ADSS Server license.

 Update Go>Sign profile (adss:gosign:profile:006) and apply the following changes:

o In General screen, change the Document Input Source to “Client”.

o In Signature Settings screen check the “Encrypt XML after Signing” checkbox and
provide the XML element name to be encrypted.

o In Service Settings screen provide the Certificate Service Settings.

o Decryption Service must be enabled in ADSS Server license.

http://localhost:8766/xml-sig
http://localhost/xml-sig
mailto:support@ascertia.com

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 30 of 33

The user can access this demo using the following URL(s):

 http://localhost:8766/e-tendering (Java)

 http://localhost/e-tendering (.Net)

The source code for web pages used in this demo can be found in ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/tomcat/webapps/E-Tendering

6.2 Certification Demos

6.2.1 Certificate Generation – Roaming Key with Go>Sign Desktop

This demo shows how Go>Sign Desktop generates a roaming key pair and how ADSS Server
generates a roaming certificate for this key pair. ADSS Server stores this roaming key credential
which can later be used by Go>Sign Desktop for signing documents.

This demo uses the sample Go>Sign profile (adss:gosign:profile:009) configured in the ADSS
Go>Sign Service.

 Ensure ADSS Go>Sign Desktop is installed on client machines.

 In the following code files, rename localhost with the IP Address of the ADSS Server
machine if your code is running on a separate machine than the ADSS Server machine:

(Roaming_key_certificate.aspx, Roaming_key_certificate.aspx.cs) or
(roaming_key_certificate.jsp, roaming_key_certificate_retrieve.jsp)

The user can access this demo using the following URL(s):

 http://localhost:8766/roaming (Java)

 http://localhost/roaming (.Net)

The source code for web pages used in this demo can be found in the ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/tomcat/webapps/Roaming

6.2.2 Certificate Generation – MS CAPI/CNG with Go>Sign Desktop

This demo shows how Go>Sign Desktop locally generates a key pair and how ADSS Server
generates a certificate for this key pair. Go>Sign Desktop stores this key and the certificate in the
MSCAPI key store, which can be used by Go>Sign Desktop for signing documents.

This demo uses the sample Go>Sign profile (adss:gosign:profile:010) configured in the ADSS
Go>Sign Service.

 Ensure ADSS Go>Sign Desktop is installed on client machines

 In the following code files, rename localhost with the IP Address of the ADSS Server
machine if your code is running on a separate machine than the ADSS Server machine:
(Mscapi_key_certificate.aspx,
Mscapi_key_certificate_retrieve.aspx,
Mscapi_key_certificate.aspx.cs,
Mscapi_key_certificate_retrieve.aspx.cs)
or (mscapi_key_certificate.jsp, mscapi_key_certificate_retrieve.jsp)

The user can access this demo using the following URL(s):

 http://localhost:8766/mscapi (Java)

 http://localhost/mscapi (.Net)

http://localhost:8766/e-tendering
http://localhost/e-tendering
http://localhost:8766/roaming
http://localhost/roaming
http://localhost:8766/mscapi
http://localhost/mscapi

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 31 of 33

The source code for web pages used in this demo can be found in the ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/GoSignDemos/MSCAPI

6.2.3 Certificate Generation – PKCS#11 with Go>Sign Desktop

This demo shows how Go>Sign Desktop locally generates a key pair and how ADSS RA Service,
along with Certification Service, generates a certificate for this key pair. Go>Sign Desktop stores this
key and the certificate in the PKCS#11 device, which can later be used by Go>Sign Desktop for
signing documents.

This demo uses the sample Go>Sign profile (adss:gosign:profile:010) configured in the ADSS
Go>Sign Service.

Pre-requisites:

In order to run this demo, please ensure the following:

 Ensure ADSS Go>Sign Desktop is installed on client machines.

 ADSS RA (Registration Service) must be enabled in ADSS Server license.

 To issue the certificate right away, in the RA Profile adss:ra:profile:001 enable 'Allow auto-
approval for web based requests (no manual approval required)' otherwise the RA Operator
first needs to approve the pending request to later import it.

 Update Go>Sign profile (adss:gosign:profile:010) and apply the following changes:

o In Key Store Settings screen change the Key store settings to PKCS#11 and
provide PKCS#11 configuration settings.

o In Service Settings screen select the “Use RA Service to generate certificate” option
and provide the RA Service address along with RA profile.

 In the following code files, rename localhost with the IP Address of the ADSS Server
machine if your code is running on a separate machine than the ADSS Server machine:
(Pkcs11_key_certificate.aspx,
Pkcs11_key_certificate_retrieve.aspx,
Pkcs11_key_certificate.aspx.cs,
Pkcs11_key_certificate_retrieve.aspx.cs)
or (pkcs11_key_certificate.jsp, pkcs11_key_certificate_retrieve.jsp)

The user can access this demo using the following URL(s):

 http://localhost:8766/pkcs11-ra (Java)

 http://localhost/pkcs11-ra (.Net)

The source code for web pages used in this demo can be found in the ADSS Client SDK under the
following path:

<ClientSDK>/GoSign/Demo/GoSignDemos/PKCS11-RA

http://localhost:8766/pkcs11-ra
http://localhost/pkcs11-ra

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 32 of 33

7 Java Go>Sign Demo – Deployment & Configuration

7.1 Deploying the Java Demo Application
The Go>Sign Desktop demo web application is written using Java web technologies. The demo
application is shipped with Tomcat Application Server v8.5.24.0.

To deploy the application, extract the supplied ZIP file into a directory, e.g.
GoSignDemoInstallation.

 Navigate to the location <GoSignDemoInstallation>\GoSign\Demo\tomcat\bin\

 Edit the file setclasspath.bat file in a text editor, set the JDK path in JAVA_HOME
variable e.g.

SET JAVA_HOME= C:/Program Files/Java//jdk11.0.12

 Execute the startup.bat file to run the Tomcat. You can shut down the Tomcat server
by executing the shutdown.bat file.

By default, the port used by Tomcat is 8766. If it is required to change the default port
then follow these instructions:

 Navigate to location:
<GoSignDemoInstallation>\GoSign\Demo\tomcat\conf

 Edit the server.xml in a text editor

 Search for the parameter <Connector port="8766" and change the port
accordingly

 Restart the tomcat to have the changes take effect.

ADSS Go>Sign - Developers Guide

© Ascertia Limited Commercial-in-Confidence Page 33 of 33

8 NET Go>Sign Demo – Deployment & Configuration

8.1 Deploying the .Net Demo Application on IIS 7.5 or higher
The steps to deploy .NET Go>Sign Applet Demo on IIS 7.5 or higher are as follows:

1. Open IIS Manager.

2. Open Sites > Default Web Site from the navigation tree in the left-hand pane.

3. Right-click on the Default Web Site tree node and select Add Application. A wizard will
be launched.

4. Enter the name of the web application in the ‘Alias’ field, e.g. pdf-sig and select the path to
the web application, i.e. <GoSignDemoInstallation>\GoSign\Demo\GoSignDemos\Pdf-
Sig.

5. Right-click on the pdf-sig web application and then edit the permissions giving full access
rights to authorised users.

6. Right-click on the pdf-sig application again and select Manage Application, Browse. This
will open your default web browser and you will see the main page of the .NET Go>Sign
Demo. Select one of the options to run the demo. (Alternatively, open your browser and
enter http://localhost/pdf-sig as the URL. You will see the main page for the .Net Go>Sign
Demo).

*** End of document ***

http://localhost/

